IMC 2008 ziua 2 problema 1 Polinoame

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

IMC 2008 ziua 2 problema 1 Polinoame

Post by Beniamin Bogosel »

Fie \( k,n \in\mathbb{N}^* \) astfel incat polinomul \( x^{2k}-x^k+1 \) divide pe \( x^{2n}+x^n+1 \). Demonstrati ca \( x^{2k}+x^k+1 \) divide \( x^{2n}+x^n+1 \).

IMC 2008.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Vad ca nu raspunde nimeni. Atunci o indicatie: luam o radacina primitiva de ordinul \( 3k \) a unitatii, care va trebui sa fie radacina a polinomului \( x^{2n}+x^n+1 \). De aici se obtine o relatie intre \( k \) si \( n \). Folosind aceasta relatie se poate demonstra relativ usor restul. :)
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Clasa a X-a”