Inegalitate clasica
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate clasica
Daca \( a,b,c \) sunt lungimile laturilor unui triunghi, sa se demonstreze ca \( \sum_{ciclic} \frac{a}{-a+b+c} \geq 3 \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
Intr-adevar....inegalitatea este de cls a 7-a. 
\( \sum_{cyc}{} {\frac {a}{-a+b+c}} \) \( = \) \( \sum_{cyc}{} {\frac {a^2}{-a^2+ab+ac} \) \( \geq \) \( \frac {{(\sum_{cyc}{} {a})}^2}{\sum_{cyc}{} {a^2} - 2\sum_{cyc}{} {ab}} \) \( \geq 3 \)\( \Leftrightarrow \) \( \sum_{cyc}{} {{(a-b)}^2} \)\( \geq 0 \) adevarat
\( \sum_{cyc}{} {\frac {a}{-a+b+c}} \) \( = \) \( \sum_{cyc}{} {\frac {a^2}{-a^2+ab+ac} \) \( \geq \) \( \frac {{(\sum_{cyc}{} {a})}^2}{\sum_{cyc}{} {a^2} - 2\sum_{cyc}{} {ab}} \) \( \geq 3 \)\( \Leftrightarrow \) \( \sum_{cyc}{} {{(a-b)}^2} \)\( \geq 0 \) adevarat
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
The Faculty of Automatic Control and Computers
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
O solutie la aceasta inegalitate poate fi urmatoarea:
Folosim binecunoscutele deconditionari in cazul unor inegalitati u lungimile laturilor unui triunghi: \( a=x+y, b=y+z, c=z+x \) cu \( x,y,z >0 \). Inegalitatea devine:
\( LHS= \sum_{cyc} \frac {x+y}{-x-y+y+z+z+x}=\sum_{cyc} \frac{x+y}{2z}= \sum_{cyc}(\frac{x}{2z}+ \frac{z}{2x}) \geq 3 \cdot 1=3 \).
Obs. Am folosit inegalitatea \( \frac{x}{2z}+\frac{z}{2x} \geq 2 \cdot \sqrt {\frac{xz}{4xz}}=1 \) si analoagele.
Folosim binecunoscutele deconditionari in cazul unor inegalitati u lungimile laturilor unui triunghi: \( a=x+y, b=y+z, c=z+x \) cu \( x,y,z >0 \). Inegalitatea devine:
\( LHS= \sum_{cyc} \frac {x+y}{-x-y+y+z+z+x}=\sum_{cyc} \frac{x+y}{2z}= \sum_{cyc}(\frac{x}{2z}+ \frac{z}{2x}) \geq 3 \cdot 1=3 \).
Obs. Am folosit inegalitatea \( \frac{x}{2z}+\frac{z}{2x} \geq 2 \cdot \sqrt {\frac{xz}{4xz}}=1 \) si analoagele.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
O intarire a acestei inegalitati ar putea fi :
\( \sum \frac{a}{-a+b+c}\geq 2+\frac{2R}{r}-\left(\frac{4R+r}{p}\right)^2\geq 3 \)
unde R-raza cercului circumscris, r-raza cercului inscris iar p-semiperimetru.
Aceasta inegalitate este echivalenta cu o inegalitate algebrica din shorlistul olimpiadei din 2006 daca mi-aduc bine aminte.
\( \sum \frac{a}{-a+b+c}\geq 2+\frac{2R}{r}-\left(\frac{4R+r}{p}\right)^2\geq 3 \)
unde R-raza cercului circumscris, r-raza cercului inscris iar p-semiperimetru.
Aceasta inegalitate este echivalenta cu o inegalitate algebrica din shorlistul olimpiadei din 2006 daca mi-aduc bine aminte.
A mathematician is a machine for turning coffee into theorems.