\( (a) \) Aratati ca inegalitatea \( \frac{x^2}{(x-1)^2}+\frac{y^2}{(y-1)^2}+\frac{z^2}{(z-1)^2} \geq 1 \) are loc pentru orice numere reale \( x,y,z, \) diferite de \( 1 \).
\( (b) \) Demonstrati ca exista o infinitate de triplete de numere rationale \( x,y,z, \) diferite de \( 1, \) ce satisfac relatia \( xyz=1 \).
Walther Janous, Austria
OIM 2008, ziua 1, pb 2
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
OIM 2008, ziua 1, pb 2
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Ciprian Oprisa
- Pitagora
- Posts: 55
- Joined: Tue Feb 19, 2008 8:01 pm
- Location: Lyon sau Cluj sau Baia de Cris
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
Obsevatie : \( xyz=1 \) (chiar si la punctul a) !!!
Dupa realizarea calculelor (destul de usoare) mai ramane de demonstrat:
\( 9 + \sum_{} {x^2y^2} +2\sum_{} {x} \geq 6 \sum_{} {xy} \) \( \Leftrightarrow \) \( 3^2 + \sum_{} {{(xy)}^2} + 2 \sum_{} {(xy)(zx)} \geq 2*3 \sum_{} {(xy)} \) \( \Leftrightarrow \) \( 3^2 + {(\sum_{} {(xy)})}^2 \geq 2*3 \sum_{} {(xy)} \)
Notam: \( \sum_{} {(xy)} = a \)
Atunci avem: \( 3^2 + a^2 \geq 2*3*a \) \( \Leftrightarrow \) \( {(a-3)}^2 \geq 0 \). adevarat
Dupa realizarea calculelor (destul de usoare) mai ramane de demonstrat:
\( 9 + \sum_{} {x^2y^2} +2\sum_{} {x} \geq 6 \sum_{} {xy} \) \( \Leftrightarrow \) \( 3^2 + \sum_{} {{(xy)}^2} + 2 \sum_{} {(xy)(zx)} \geq 2*3 \sum_{} {(xy)} \) \( \Leftrightarrow \) \( 3^2 + {(\sum_{} {(xy)})}^2 \geq 2*3 \sum_{} {(xy)} \)
Notam: \( \sum_{} {(xy)} = a \)
Atunci avem: \( 3^2 + a^2 \geq 2*3*a \) \( \Leftrightarrow \) \( {(a-3)}^2 \geq 0 \). adevarat
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
The Faculty of Automatic Control and Computers
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
(ii) Prove that equality case is achieved for infinitely many triples of rational numbers x, y and z.
pt egalitate \( xy+yz+zx=3 \)
\( xyz=1 \) rezulta \( z=\frac{1}{xy} \)
\( xy+\frac{1}{x}+\frac{1}{y}=3 \)
\( x^2y^2+x(1-3y)+y=0 \)
\( \Delta=9y^2-6y+1-4y^3 \)
\( \Delta=y^2-4y^3+1-4y+8y^2-2y \)
\( \Delta=(1-4y)(y-1)^2 \)
petru \( y=\frac{1-k^2}{4} \) , cu k natural impar avem delta patrat perfect deci x este rational. Cum x si y sunt rationale at si\( \frac{1}{xy} \) este rational.
Cum k poate fi orice numar impar => avem o infinitate de astfel de triplete.
pt egalitate \( xy+yz+zx=3 \)
\( xyz=1 \) rezulta \( z=\frac{1}{xy} \)
\( xy+\frac{1}{x}+\frac{1}{y}=3 \)
\( x^2y^2+x(1-3y)+y=0 \)
\( \Delta=9y^2-6y+1-4y^3 \)
\( \Delta=y^2-4y^3+1-4y+8y^2-2y \)
\( \Delta=(1-4y)(y-1)^2 \)
petru \( y=\frac{1-k^2}{4} \) , cu k natural impar avem delta patrat perfect deci x este rational. Cum x si y sunt rationale at si\( \frac{1}{xy} \) este rational.
Cum k poate fi orice numar impar => avem o infinitate de astfel de triplete.