O inegalitate elementara

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

O inegalitate elementara

Post by Claudiu Mindrila »

Demonstrati ca pentru orice numere \( a,b,c \in (0, \infty) \), are loc inegalitatea \( (a+b)(ab+1)+(b+c)(bc+1)+(c+a)(ca+1) \geq 4(ab+bc+ca) \).

Zdravko Starc, Revista Minus 1/2008
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( \sum {(a+b)(ab+1)}\geq\sum {2\sqrt{ab}2\sqrt{ab}}=4\sum {ab} \)
Post Reply

Return to “Clasa a VII-a”