O inegalitate trigonometrica intr-un triunghi neobtuzunghic.

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

O inegalitate trigonometrica intr-un triunghi neobtuzunghic.

Post by Virgil Nicula »

Sa se arate ca intr-un triunghi ABC care nu este obtuz exista inegalitatea \( \underline {\overline {\left\|\ \frac {a^2\cos A+b^2\cos B+c^2\cos C}{a^2+b^2+c^2}\le \frac rR\ \right\|}}\ \le\ \frac 12 \) .
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosind relatiile \( r=4R\prod {\sin{\frac{A}{2}}} \) si \( \sum {\cos A}=1+4\prod {\sin {\frac{A}{2}}} \) inegalitatea este echivalenta cu


\( \sum {a^2}\leq \sum {(a^2+b^2)\cos C} \)

Dar \( \cos C=\frac{a^2+b^2-c^2}{2ab} \) si analoagele si atunci totul rezulta din AM\( \geq \)GM

\( \sum {(a^2+b^2)\cos C}=\sum {(a^2+b^2)\frac{a^2+b^2-c^2}{2ab}}\geq\sum {(a^2+b^2-c^2)}=\sum {a^2} \)
Post Reply

Return to “Clasa a IX-a”