Aproximare parte fractionara
Moderator: Filip Chindea
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Aproximare parte fractionara
Sa se arate ca \( \sum_{n\leq x}\left\{\frac{x}{n}\right\}=(1-\gamma)x+O(x^{1/2}) \), unde \( \{x\} \) reprezinta partea fractionara a numarului real \( x \), iar \( \gamma \) este constanta lui Euler.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Vezi topicul de aici, si faceti observatia ca
\( \sum_{k=1}^n d(k) = \sum_{ab \le n} 1 = \sum_{k=1}^n \left\lfloor \frac{n}{k} \right\rfloor \).
\( \sum_{k=1}^n d(k) = \sum_{ab \le n} 1 = \sum_{k=1}^n \left\lfloor \frac{n}{k} \right\rfloor \).
Life is complex: it has real and imaginary components.