Aproximare parte fractionara

Moderator: Filip Chindea

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Aproximare parte fractionara

Post by Cezar Lupu »

Sa se arate ca \( \sum_{n\leq x}\left\{\frac{x}{n}\right\}=(1-\gamma)x+O(x^{1/2}) \), unde \( \{x\} \) reprezinta partea fractionara a numarului real \( x \), iar \( \gamma \) este constanta lui Euler.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Vezi topicul de aici, si faceti observatia ca

\( \sum_{k=1}^n d(k) = \sum_{ab \le n} 1 = \sum_{k=1}^n \left\lfloor \frac{n}{k} \right\rfloor \).
Life is complex: it has real and imaginary components.
Post Reply

Return to “Teoria analitica a numerelor”