Niste limite in care apar siruri recurente

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
Mircea Cimpoeas
Euclid
Posts: 14
Joined: Thu Sep 27, 2007 8:28 pm

Niste limite in care apar siruri recurente

Post by Mircea Cimpoeas »

Sa se calculeze \( \lim_{n\rightarrow \infty} \frac{2^n}{x_n} \), unde \( x_1=1,\;x_{n+1}=x_n+\sqrt{x_n^2+1} \).

Sa se calculeze \( \lim_{n\rightarrow \infty} 4^n(2-{x_n}) \), unde \( x_1=1,\;x_{n+1}=\sqrt{x_n+2} \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Pentru prima limita notam \( x_1=\cot\frac{\pi}{4} \) , apoi prin inductie \( x_n=\cot\frac{\pi}{2^{n+1}} \) si apoi \( \lim_{n\to\infty}\frac{2^n}{x_n}=\frac{\pi}{2} \)


Pentru a doua analog se arate ca \( x_n=2\cos\frac{\pi}{3\cdot2^n} \) si apoi limita este \( (\frac{\pi}{3})^2 \)
Post Reply

Return to “Analiza matematica”