Ecuatia lui Ramanujan

Moderator: Mihai Fulger

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Ecuatia lui Ramanujan

Post by Cezar Lupu »

Sa se rezolve in numere intregi ecuatia:

\( x^{2}+7=2^{n} \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Cristi Popa
Euclid
Posts: 24
Joined: Sat Nov 10, 2007 9:31 pm
Location: Bucuresti / Ramnicu-Valcea

Post by Cristi Popa »

Ecuatia a fost propusa de Ramanujan in 1913 si rezolvata de Nagell in 1948.
Urmatoarea solutie este elementara (poate cea mai elementara), ea fiind insa destul de lunga.
Presupunem cunoscut faptul ca \( \mathbb{Z}[\frac{1+i\sqrt{7}}{2}] \) este inel euclidian si ca \( U(\mathbb{Z}[\frac{1+i\sqrt{7}}{2}])=\{\pm1\}. \)
Cazul I: n par, \( n=2m\Rightarrow 7=2^{2m}-x^2=(2^m-x)(2^m+x) \).
Dar \( 2^m-x,\ 2^m+x\in\mathbb{N},\ 2^m-x\leq2^m+x\Rightarrow \left\{ \begin{array}{ll}
2^m-x=1\\
2^m+x=7
\end{array} \right. \Rightarrow 2^{m+1}=8=2^3\Rightarrow \)

\( \Rightarrow m+1=3\Rightarrow m=2\Rightarrow n=4\Rightarrow x=\pm3. \)
Deci, \( n=4,\ x=\pm3. \)
Cazul al II-lea: n impar, x impar
\( 2^n\geq 1+7=8\Rightarrow n\geq 3 \)
\( \frac{x+i\sqrt{7}}{2}\cdot\frac{x-i\sqrt{7}}{2}=2^{n-2}=2^y \), unde \( y=n-2,\ y \) impar, \( y\geq1 \).
Daca \( n=3\Rightarrow x=\pm1. \) Presupunem in continuare ca \( y\geq3. \)
\( \frac{x+i\sqrt{7}}{2}=\frac{x-1}{2}+\frac{1+i\sqrt{7}}{2}\in\mathbb{Z}[\frac{1+i\sqrt{7}}{2}] \) si \( \frac{x-i\sqrt{7}}{2}=\frac{x+1}{2}-\frac{1+i\sqrt{7}}{2}\in\mathbb{Z}[\frac{1+i\sqrt{7}}{2}] \)
\( \frac{x-1}{2},\ \frac{x+1}{2}\in\mathbb{Z} \) deoarece \( x \) este impar.
\( 2=\frac{1+i\sqrt{7}}{2}\cdot\frac{1-i\sqrt{7}}{2} \)
Arat ca \( \frac{1+i\sqrt{7}}{2},\ \frac{1-i\sqrt{7}}{2} \) sunt prime in \( \mathbb{Z}[\frac{1+i\sqrt{7}}{2}] \) si ca \( \frac{1+i\sqrt{7}}{2},\ \frac{1-i\sqrt{7}}{2} \) nu sunt asociate in divizibilitate.
Fie \( \frac{1+i\sqrt{7}}{2}=\alpha\cdot\beta,\ \alpha,\ \beta\in\mathbb{Z}[\frac{1+i\sqrt{7}}{2}] \)
Inelul \( \mathbb{Z}[\frac{1+i\sqrt{7}}{2}] \) este euclidian cu functia \( \varphi \), unde \( \varphi(z)=z\cdot\overline{z}=|z|^2. \)
\( 2=\varphi(\frac{1+i\sqrt{7}}{2})=\varphi(\alpha)\cdot\varphi(\beta)\Rightarrow\varphi(\alpha)=1 \) sau \( \varphi(\beta)=1 \)
Daca \( \varphi(\alpha)=1\Rightarrow \alpha\in U(\mathbb{Z}[\frac{1+i\sqrt{7}}{2}]). \) Daca \( \varphi(\beta)=1\Rightarrow \beta\in U(\mathbb{Z}[\frac{1+i\sqrt{7}}{2}]). \)
Deci, \( \frac{1+i\sqrt{7}}{2} \) este prim in \( \mathbb{Z}[\frac{1+i\sqrt{7}}{2}] \). Analog se arata ca \( \frac{1-i\sqrt{7}}{2} \) este prim in \( \mathbb{Z}[\frac{1+i\sqrt{7}}{2}] \).
Avem ca \( \frac{x+i\sqrt{7}}{2}\cdot\frac{x-i\sqrt{7}}{2}=(\frac{1+i\sqrt{7}}{2})^y\cdot(\frac{1-\sqrt{7}}{2})^y. \)
Fie \( d=(\frac{x+i\sqrt{7}}{2},\ \frac{x-i\sqrt{7}}{2}). \) Aratam ca \( d=1. \)
Rezulta ca \( d\ |\ \frac{x+i\sqrt{7}}{2}-\frac{x-i\sqrt{7}}{2}=i\sqrt{7}\Rightarrow d\ |\ i\sqrt{7}. \) Se arata ca mai sus ca \( i\sqrt{7} \) este prim (ireductibil) in \( \mathbb{Z}[\frac{1+i\sqrt{7}}{2}]\Rightarrow d=1 \) sau \( i\sqrt{7} \).
Deoarece \( d\ |\ 2^y\Rightarrow d\neq i\sqrt{7}\Rightarrow d=1 \) si avem urmatoarele egalitati:
\( (1)\ \ \ \left\{ \begin{array}{ll}
\frac{x+i\sqrt{7}}{2}=\pm(\frac{1+i\sqrt{7}}{2})^y\\
\frac{x-i\sqrt{7}}{2}=\pm(\frac{1-i\sqrt{7}}{2})^y
\end{array} \right. \)
sau \( (2)\ \ \ \left\{ \begin{array}{ll}
\frac{x+i\sqrt{7}}{2}=\pm(\frac{1-i\sqrt{7}}{2})^y\\
\frac{x-i\sqrt{7}}{2}=\pm(\frac{1+i\sqrt{7}}{2})^y
\end{array} \right. \)

Scadem relatiile din (1) si obtinem: \( \pm i\sqrt{7}=(\frac{1+i\sqrt{7}}{2})^y-(\frac{1-i\sqrt{7}}{2})^y \). Scadem relatiile din (2) si obtinem: \( \pm i\sqrt{7}=(\frac{1-i\sqrt{7}}{2})^y-(\frac{1+i\sqrt{7}}{2})^y \).
Notam \( a=\frac{1+i\sqrt{7}}{2} \) si \( b=\frac{1-i\sqrt{7}}{2} \). Rezulta ca \( a-b=i\sqrt{7},\ a+b=1,\ a\cdot b=2,\ a^y-b^y=\pm i\sqrt{7}=\pm (a-b). \) Aratam ca semnul este \( "-" \).
Presupunem ca \( a^y-b^y=a-b. \) Avem ca \( a^2=(1-b)^2\equiv 1-2b=1-ab^2\equiv 1\ (mod\ b^2). \)
Deoarece \( y \) este impar, \( y\geq 3\Rightarrow a^y=a\cdot (a^2)^{\frac{y-1}{2}}\equiv a\ (mod\ b^2). \)
Avem ca \( a-b=a^y-b^y\equiv a+0=a\ (mod\ b^2)\Rightarrow a\equiv a-b\ (mod\ b^2)\Rightarrow b\equiv 0\ (mod\ b^2)\Rightarrow b^2\ |\ b \) ceea ce este in contradictie cu faptul ca \( b \) este prim. Deci, \( a^y-b^y=-(a-b)=b-a. \)
\( -i\sqrt{7}=(\frac{1+i\sqrt{7}}{2})^y-(\frac{1-i\sqrt{7}}{2})^y=\frac{2[C_y^1 i\sqrt{7}+C_y^3(i\sqrt{7})^3+C_y^5(i\sqrt{7})^5+...]}{2^y}\Rightarrow \)
\( \Rightarrow -2^{y-1}=C_y^1-7C_y^3+7^2C_y^5-7^3C_y^7+...\Rightarrow -2^{y-1}\equiv y\ (mod\ 7). \)
Puterile lui 2 modulo 7 sunt: 1,2,4 (se repeta din 3 in 3). Tinand cont si de faptul ca \( y\equiv 1\ (mod\ 2) \) obtinem:
\( y=3k\Rightarrow y\equiv 3\ (mod 7)\Rightarrow y\equiv 3\ (mod\ 21)\Rightarrow y\equiv 3\ (mod\ 42) \)
\( y=3k+1\Rightarrow y\equiv -1\ (mod 7)\Rightarrow y\equiv 13\ (mod\ 21)\Rightarrow y\equiv 13\ (mod\ 42) \)
\( y=3k+2\Rightarrow y\equiv 5\ (mod 7)\Rightarrow y\equiv 5\ (mod\ 21)\Rightarrow y\equiv 5\ (mod\ 42) \)
Deci, \( y\equiv 3,5,13\ (mod\ 42). \)
Ultimul pas este urmatorul: daca \( y,\ y_1 \) sunt solutii ale ecuatiei si \( y\equiv y_1\ (mod\ 42)\Rightarrow y=y_1. \)
Avem \( \frac{x^2+7}{4}=2^y,\ \frac{x_1^2+7}{4}=2^{y_1},\ y,y_1\geq 3 \) si impare.
Presupunem ca \( y-y_1\neq 0\Rightarrow (\exists)\ l\in\mathbb{N}^* \) a.i. \( 7^l\ ||\ y-y_1. \) Existenta lui \( l\in\mathbb{N}^* \) reiese din \( y\equiv y_1\ (mod\ 42)\Rightarrow 7\ |\ 42\ |\ y-y_1. \)
De asemenea, \( a^y-b^y=a^{y_1}-b^{y_1}=b-a,\ a=\frac{1+i\sqrt{7}}{2}. \)
Aratam ca \( a^{y-y_1}\equiv (1+i\sqrt{7})^{y-y_1}\ (mod\ 7^{l+1}). \)
Mai intai aratam prin inductie dupa \( l \) ca \( (1+7\beta)^{7^l}\equiv 1\ (mod\ 7^{l+1}). \)
Pentru \( l=0 \)este evident. Presupunem adevarat pentru \( l \) (pasul inductiv), i.e. \( (1+7\beta)^{7^l}=1+7^{l+1}\gamma. \)
\( (1+7\beta)^{7^{l+1}}=(1+7^{l+1}\gamma)^7=1+C_7^1 7^{l+1}\gamma+...\equiv 1+C_7^1 7^{l+1}\gamma=1+7^{l+2}\gamma\equiv 1\ (mod\ 7^{l+2}). \)
Dar, \( 7^{2(l+1)}\ \vdots\ 7^{l+2},\ (2(l+1)\geq l+2),\ \frac{y-y_1}{6}=7^l\cdot t. \)
Rezulta ca \( 2^{y-y_1}=(2^6)^{\frac{y-y_1}{6}}=(1+7\cdot 9)^{7^l \cdot t}=[(1+7 \cdot 9)^{7^l}]^t\equiv 1^t=1\ (mod\ 7^{l+1}). \)
Deci, \( a^{y-y_1}\equiv (1+i\sqrt{7})^{y-y_1}\ (mod\ 7^{l+1}). \)
In continuare, aratam prin inductie dupa \( l \) ca \( (1+i\sqrt{7})^{7^l}\equiv 1+7^l i\sqrt{7}\ (mod\ 7^{l+1}). \)
Pentru \( l=0 \), avem ca \( 1+i\sqrt{7}\equiv 1+i\sqrt{7}\ (mod\ 7). \) Presupunem adevarata relatia pentru \( l \) si o demonstram pentru \( l+1. \)
\( (1+i\sqrt{7})^{7^l}\equiv 1+7^l i\sqrt{7}\Leftrightarrow (1+i\sqrt{7})^{7^l}=1+7^l i\sqrt{7}+\alpha 7^{l+1}. \)
\( (1+i\sqrt{7})^{7^{l+1}}=(1+7^l i\sqrt{7}+\alpha 7^{l+1})^7\equiv (1+7^l i\sqrt{7})^7+C_7^1(1+7^l i\sqrt{7})^6\cdot \alpha 7^{l+1}\equiv \)
\( \equiv(1+7^l i\sqrt{7})^7\equiv 1+C_7^1 7^l i\sqrt{7}+C_7^2 (7^l i\sqrt{7})^2+...\equiv 1+C_7^1 7^l i\sqrt{7}=1+7^{l+1}i\sqrt{7}\ (mod\ 7^{l+2}). \)
Considerand \( y_1-y=7^l\cdot t \) si ridicand la puterea \( t \) membrii din congruenta \( (1+i\sqrt{7})^{7^l}\equiv 1+7^l i\sqrt{7}\ (mod\ 7^{l+1}) \) obtinem:
\( (1+i\sqrt{7})^{y_1-y}=(1+i\sqrt{7})^{7^l\cdot t}\equiv (1+7^l i\sqrt{7})^t=1+C_t^1 7^l i\sqrt{7}+C_t^2 (7^l i\sqrt{7})^2+...= \)
\( =1+C_t^1 7^l i\sqrt{7}+7^{2l+1}(...)\equiv 1+C_t^1 7^l i\sqrt{7}=1+t7^l i\sqrt{7}=1+(y_1-y)i\sqrt{7}\ (mod\ 7^{l+1}). \)
Deci, \( 1+(y_1-y)i\sqrt{7}\equiv a^{y_1-y}\equiv (1+i\sqrt{7})^{y_1-y}\ (mod\ 7^{l+1}). \)
Folosind \( y_1-y=7^l\cdot t \) si \( a^y\equiv \frac{1+yi\sqrt{7}}{2^y}\ (mod\ 7)\Leftrightarrow a^y=\frac{1+yi\sqrt{7}}{2^y}+7\cdot\alpha \), obtinem:
\( a^{y_1}=a^{y_1-y}\cdot a^y\equiv [1+(y_1-y)i\sqrt{7}]a^y=a^y+a^y(y_1-y)i\sqrt{7}\equiv a^y+\frac{1+yi\sqrt{7}}{2^y}(y_1-y)i\sqrt{7}\ (mod\ 7^{l+1}). \)
Am folosit mai sus \( \frac{1+yi\sqrt{7}}{2^y}(y_1-y)\equiv a^y(y_1-y)=\frac{1+yi\sqrt{7}}{2^y}(y_1-y)+(y_1-y)7\alpha\ (mod\ 7^{l+1}) \) si \( (y_1-y)7\alpha\ \vdots\ 7^{l+1}. \)
Avem ca \( b^{y_1}\equiv [1+(y-y_1)i\sqrt{7}]b^y\equiv b^y+\frac{(y-y_1)i\sqrt{7}(1-yi\sqrt{7})}{2^y}\ (mod\ 7^{l+1}) \), deoarece \( b=\frac{1-i\sqrt{7}}{2},\ b^{y_1-y}\equiv (1-i\sqrt{7})^{y_1-y}\equiv 1+(y-y_1)i\sqrt{7}\ (mod\ 7^{l+1}) \) si \( b^y\equiv \frac{1-yi\sqrt{7}}{2^y}. \)
Asadar, \( \frac{(y-y_1)i\sqrt{7}(1-yi\sqrt{7})}{2^y}\equiv b^{y_1}-b^y=a^{y_1}-a^y\equiv \frac{(y_1-y)i\sqrt{7}(1+yi\sqrt{7})}{2^y}\ (mod\ 7^{l+1})\Rightarrow \)
\( \Rightarrow\frac{1+yi\sqrt{7}}{2^y}(y_1-y)i\sqrt{7}\equiv\frac{-1+yi\sqrt{7}}{2^y}(y_1-y)i\sqrt{7}\ (mod\ 7^{l+1})\Rightarrow (y_1-y)i\sqrt{7}\equiv 0\ (mod\ 7^{l+1})\Rightarrow \)
\( \Rightarrow (y_1-y)i\sqrt{7}=7^{l+1}\cdot\gamma,\ \gamma\in\mathbb{Z}[\frac{1+i\sqrt{7}}{2}]\Rightarrow \)
\( \Rightarrow (y_1-y)^2\cdot 7=\varphi((y_1-y)i\sqrt{7})=7^{2(l+1)}\cdot\varphi(\gamma)\Rightarrow (y_1-y)\ \vdots\ 7^{2l+1}. \)
Dar, \( 7^l\ ||\ y_1-y\Rightarrow 7^{2l}\ ||\ (y_1-y)^2\Rightarrow (y_1-y)^2\neq 0\ (mod\ 7^{2l+1}) \) ceea ce reprezinta o contradictie \( \Rightarrow y_1=y. \)
Deci, pentru \( y \) impar, \( y\geq 3 \) avem \( y\in\{3,5,13\}. \) Dar, \( n=y+2\Rightarrow n\in\{5,7,15\}\Rightarrow x\in\{\pm5,\pm11,\pm181\}. \)
Asadar, solutiile ecuatiei lui Ramanujan in \( \mathbb{Z} \) sunt: \( (x,n)\in\{(\pm1,3),(\pm3,4),(\pm5,5),(\pm11,7),(\pm181,15)\}. \)

Remarca. In solutia data de Nagell se folosea ecuatia Pell:
\( x^2+7=2^{2n+1}\Leftrightarrow x^2-2^{2n+1}=-7\Leftrightarrow x^2-2y^2=-7. \)
Post Reply

Return to “Teoria algebrica si curbe eliptice”