Fie a,b,c nenegative, cu a+b+c=1. Demonstrati :
\( \frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\geq\frac{5}{2} \)
Cu dedicatie pentru Claudiu Mandrila
Inegalitate ,,nice'' 1
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Din inegalitatea \( AM-GM \) avem ca \( a^3+a \geq 2a^2 \Rightarrow -\frac{a^2}{a^2+1} \geq -\frac{a}{2} \Rightarrow 1-\frac{a^2}{a^2+1} \geq 1-\frac{a}{2} \Rightarrow \frac{1}{a^2+1}\geq 1- \frac{a}{2}. \)
Rezulta ca \( \sum \frac{1}{a^2+1} \geq 3-\frac{a+b+c}{2}=3-\frac{1}{2}=\frac{5}{2} \), c.c.t.d.
Rezulta ca \( \sum \frac{1}{a^2+1} \geq 3-\frac{a+b+c}{2}=3-\frac{1}{2}=\frac{5}{2} \), c.c.t.d.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste