Tot din Gazeta...

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Tot din Gazeta...

Post by Claudiu Mindrila »

Fie \( x,y,z \in (0, \infty) \) astfel incat \( x+y+z=1 \). Sa se arate ca:
\( \frac{x}{xy+1}+\frac{y}{yz+1}+\frac{z}{zx+1} \geq \frac{36xyz}{13xyz+1} \)

Marius Ghergu si Dan Stefan Marinescu, G.M. 7-8/2003
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Claudiu ,este o problema foarte frumoasa!

Stiu doua demonstratii.

Prima: AM\( \geq \)GM

\( \sum {\frac{x}{xy+1}}\geq \frac{9\sqrt[3]{xyz}}{3+\sum xy}\geq \frac{27\sqrt[3]{xyz}}{10}\geq \frac{36xyz}{13xyz+1} \)(demonstrati)

A doua (Mai tarziu)
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Si eu stiu una, dar se bazeaza pe urmatoarea forma a inegalitatii Schur: Daca \( x+y+z=1 \) atunci \( xy+yz+zx \leq \frac{1+9xyz}{4} \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Foarte bine , scrie-o :shock:
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Impartim inegalitatea data prin \( xyz \) si obtinem: \( \frac{1}{yz(xy+1)}+\frac{1}{xz(yz+1)}+\frac{xy}{(xz+1)} \geq \frac{36}{13xyz+1}
\)

Din inegalitatea CBS obtinem ca \( \sum \frac{1}{yz(xy+1)} \geq \frac{9}{\sum yz(xy+1}=\frac{9}{xyz(\sum x)+\sum xy}=\frac{9}{xyz+\sum xy}.(1) \).
Este binecunoscuta urmatoarea forma a inegalitatii Schur: Daca
\( a,b,c>0 \) si \( a+b+c=1 \), atunci are loc inegalitatea \( ab+bc+ca \leq \frac{1+9abc}{4} \). Inlocuind in aceasta inegalitate \( a=yz(xy+1) \), \( b=xz(yz+1) \), \( c=xy(xz+1) \) obtinem ca:
\( xyz+ \sum xy \leq \frac{13xyz+1}{4}.(2) \).
Din \( (1) \) si \( (2) \) rezulta ca \( \sum \frac{1}{yz(xy+1)} \geq \frac{36}{13xyz+1} \), ceea ce trebuia demonstrat.
Observatie: Aceasta nu este solutia mea, ci a autorilor
Last edited by Claudiu Mindrila on Wed Jun 25, 2008 2:31 pm, edited 1 time in total.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Asa era si a doua solutie a mea.

Ceva ,idei, la celelalte inegalitati avem?
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Ma gandesc acum la aceea din Arhimede ramasa nerezolvata. Era postata la clasa a VII-a :shock:
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Claudiu, imi pare rau sa-ti spun, insa inegalitatea asta nu este nicidecum de clasa a VIII-a. :shock:
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Cezar, ai cartea "Probleme pentru pregatirea Olimpiadelor de Matematica clasele VI-VIII" , de Marius Ghergu aparuta la editura GIL in 2004?
Daca o ai, uite-te la clasa a VIII-a la problema 77 care este chiar inegalitatea pe care am propus-o. . 8)
Nu spun ca ar fi potrivita, dar daca autorul asa considerat...
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a VIII-a”