\( 1. \)Fie \( a,b,c \in (0, \infty) \) si daca \( (abc)^3=2 \), sa se arate ca: \( \frac{1}{a^3(1+b^3)}+\frac{1}{b^3(1+c^3)}+\frac{1}{c^3(1+a^3)} \geq 1 \)
Marcel Chirita, Arhimede 5-8/2005
\( 2. \) Daca \( a,b,c \in [0,1] \), atunci are loc inegalitatea: \( \frac{a}{4+b^2+c^2}+\frac{b}{4+c^2+a^2}+\frac{c}{4+a^2+b^2} \leq \frac{1}{2} \)
Virgil Nicula, Arhimede 9-12/2005
Doua inegalitati din Arhimede
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Doua inegalitati din Arhimede
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
O alta solutie
Sau...deoarece \( 4+b^2+c^2 \geq 2b+2c+2 \geq 2(a+b+c) \) rezulta ca \( \sum \frac{a}{4+b^2+c^2} \leq \frac{\sum a}{2(a+b+c)}=\frac{1}{2} \). Rezulta cerinta...
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste