Aratati ca pentru orice numere reale a,b,c>0 avem:
\( \frac{a^2+1}{b+c}+\frac{b^2+1}{c+a}+\frac{c^2+1}{a+b}\geq 3 \)
Shortlist ONM 2007
Shortlist ONM 2007
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Raspuns...
Pentru inceput, din inegalitatea CBS avem ca: \( \Sigma \frac{a^2}{b+c} \geq \frac{a+b+c}{2} \). Tot din CBS avem ca \( \Sigma \frac{1}{b+c} \geq \frac{9}{2(a+b+c)}. \)
Prin adunarea acestor inegalitati obtinem ca \( \Sigma \frac{a^2}{b+c} \geq \frac{a+b+c}{2}+\frac{9}{2(a+b+c)} \geq 2 \sqrt{\frac{a+b+c}{2} \cdot \frac{9}{2(a+b+c)}}=2 \cdot \frac{3}{2}=3 \)
Prin adunarea acestor inegalitati obtinem ca \( \Sigma \frac{a^2}{b+c} \geq \frac{a+b+c}{2}+\frac{9}{2(a+b+c)} \geq 2 \sqrt{\frac{a+b+c}{2} \cdot \frac{9}{2(a+b+c)}}=2 \cdot \frac{3}{2}=3 \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)