O intarire a inegalitatii lui Lagarias legata de RH, own

Moderator: Filip Chindea

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

O intarire a inegalitatii lui Lagarias legata de RH, own

Post by Cezar Lupu »

Intr-un articol publicat in American Mathematical Monthly, Jeffrey Lagarias aratat
ca inegalitatea surprinzatoare,

\( \sigma(n)\leq H_{n}+exp(H_{n})\log(H_{n}),\forall n\geq 1(*) \)

unde \( \sigma(n)=\sum_{d/n}d \) este functia "sum-divisor", iar
\( H_{n}=1+\frac{1}{2}+\dots+\frac{1}{n} \) reprezinta sirul armonic, este echivalenta cu ipoteza lui Riemann.
Sigur, sfatul meu este: kids don't do \( (*) \) at home atata timp cat ea este echivalenta cu ipoteza lui Riemann, care spune ca zerourile netriviale ale functiei
Riemann Zeta, \( \zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^{s}} \) au partea reala \( \frac{1}{2} \). Tot in acelasi numar al revistei, the same Lagarias propune urmatoarea problema:

Sa se arate ca

\( \sigma(n)\leq H_{n}+2exp(H_{n})\log(H_{n}),\forall n\geq 1(**) \)

Problema \( (**) \) poate fi abordata destul de usor. De fapt, incercati sa demonstrati urmatoarea rafinare a inegalitatii \( (**) \), anume:

\( \frac{n^{2}}{\varphi(n)}\leq H_{n}+2exp(H_{n})\log(H_{n}),\forall n\geq 1(***) \)
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Teoria analitica a numerelor”