Inegalitatea 2, cu radicali

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Inegalitatea 2, cu radicali

Post by Cezar Lupu »

Fie \( x, y, z \) numere reale strict pozitive astfel incat \( x+y+z=3 \). Sa se arate ca \( \sqrt{x}+\sqrt{y}+\sqrt{z}\geq xy+yz+zx. \)

Baraj Russia, 2002
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Inegalitate se mai scrie:

\( \sum \sqrt{x}\geq\frac{1}{2}( (x+y+z)^2-x^2-y^2-z^2) \)

adica

\( \sum x^2+2\sum sqrt{x}\geq9 \).

Dar \( x^2+2\sqrt{x}=x^2+\sqrt{x}+\sqrt{x}\geq3\sqrt[3]{x^2\sqrt{x}\sqrt{x}}=3x \)

si analoagele.

Prin sumarea acestor relatii obtinem inegalitatea din enunt.
Post Reply

Return to “Clasa a IX-a”