Z^m izo cu Z^n daca si numai daca m=n

Moderator: Mihai Fulger

Post Reply
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Z^m izo cu Z^n daca si numai daca m=n

Post by Alin Galatan »

O chestie care mi s-a parut draguta.

Aratati ca \( Z^m\simeq Z^n \) daca si numai daca \( m=n \).

Bineinteles ca se face cu chestii avansate, gen rangul unui modul, in jumatate de rand. Insa as vrea o demonstratie elementara. Eu am una (din Rotman), care (parerea mea) te face sa simti demonstratia teoremei rangului modulelor peste inele comutative.
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Post by bae »

***
Last edited by bae on Sat Feb 13, 2010 1:56 pm, edited 1 time in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Fie \( f(e_j)=\sum _{i=1}^n{a_{ij}e_i \), unde f este izomorfismul de la \( \mathbb{Z}^m \) la \( \mathbb{Z}^n \). Matricea \( A=(a_{ij})_{i=\overline{1,n},j=\overline{1,m} \) trebuie sa aiba rangul egal cu numarul de coloane, de unde \( n\leq m \). Analog rezulta \( m\leq n \).

PS. Am notat \( e_i=(0,0,...,1,...0) \) unde 1 se afla pe pozitia i.
Post Reply

Return to “Algebra comutativa”