O inegalitate trigonometrica intr-un triunghi

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

O inegalitate trigonometrica intr-un triunghi

Post by BogdanCNFB »

Fie ABC un triunghi ascutitunghic. Aratati ca:
\( \sin A+\sin B>\cos A+\cos B+\cos C \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Relatia din enunt se scrie \( 2t^2-2t\cos\frac{A-B}{2}+2\sin\frac{C}{2}\cos\frac{A-B}{2}-1<0 \) unde \( t=\cos\frac{C}{2} \). Avem \( \Delta=4(\cos^2\frac{A-B}{2}-4\sin\frac{C}{2}\cos\frac{A-B}{2}+2)>0 \) si se arata ca \( x_1<\cos\frac{C}{2}<x_2 \) de unde rezulta concluzia.
Post Reply

Return to “Clasa a X-a”