Chestiune extremala legata de nr. de vârfuri

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Chestiune extremala legata de nr. de vârfuri

Post by Filip Chindea »

Fie \( n \in \mathbb{N}^{\ast} \). Un grup de persoane se numeste \( n \)-echilibrat daca printre oricare trei persoane gasim doua cunostinte si printre oricare \( n \) persoane gasim doua care nu se cunosc. Aratati ca orice grup \( n \)-echilibrat are cel mult \( (n-1)(n+2)/2 \) membri.

[TST III 2008, Problema 4]
Life is complex: it has real and imaginary components.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Hint: Avem inegalitatea cu numarul Ramsey \( R(m, n) \le {m + n - 2 \choose n - 1} \).
Life is complex: it has real and imaginary components.
Post Reply

Return to “Combinatorica”