Limita de sir de tipul (x_1+x_2+...+x_n)/lnn

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Limita de sir de tipul (x_1+x_2+...+x_n)/lnn

Post by Cezar Lupu »

Fie \( x_{1}, x_{2}>0 \) numere reale si \( x_{n+1}=\frac{1}{n^{x_{n}}}+\sqrt[n]{x_{n}} \) pentru \( n\geq 2 \). Sa se calculeze
\( \lim_{n\to\infty}\frac{x_{1}+x_{2}+\ldots +x_{n}}{ln n} \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Analiza matematica”