Subiectul III-faza finala-Concursul de Evaluare in Educatie

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Tudor Micu
Pitagora
Posts: 51
Joined: Thu Mar 06, 2008 9:39 pm
Location: Cluj-Napoca, Romania

Subiectul III-faza finala-Concursul de Evaluare in Educatie

Post by Tudor Micu »

Se considera \( n\in N^* \). Sa se arate ca exista \( a_0, a_1, a_2,\ldots,a_n\in Z \), nu toate nule, cu \( |a_i|\leq 9 \), oricare ar fi \( i\in\{1,2,3,...,n\} \), astfel incat: \( |a_0+a_1\log_23+a_2\log_34+...+a_n\log_{n+1}(n+2)|<\frac{1}{10^n-1} \)

Ion Savu
Tudor Adrian Micu
Universitatea "Babes Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica
Post Reply

Return to “Clasa a X-a”