Radicali de ordin 3

Post Reply
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Radicali de ordin 3

Post by bae »

Sa se arate ca \( \sqrt[3]{3} \) nu se afla in \( \mathbb{Q}(\sqrt[3]{2}) \).
dede
Euclid
Posts: 34
Joined: Tue Oct 16, 2007 6:05 pm

Post by dede »

Presupunem ca \( \sqrt[3]{3}\in \mathbb{Q}(\sqrt[3]{2}) \). Atunci exista \( a,b,c \in \mathbb{Q} \) astfel incat \( 3=(a+b\sqrt[3]{2}+c\sqrt[3]{4})^3 \Rightarrow \left\{ \begin{array}{rcl} a^3+12abc+2b^3+4c^3=3 \\ a^2b+2ac^2+2b^2c=0 \\ a^2c+ab^2+2bc^2=0 \end{array} \Rightarrow a=0 \), fals sau \( b=c\sqrt[3]{2} \), fals fiindca \( a,b,c \in \mathbb{Q} \).
Post Reply

Return to “Teorie Galois”