Subiectul 3, Concursul centrelor de excelenta 2008

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
Bogdan Cebere
Thales
Posts: 145
Joined: Sun Nov 04, 2007 1:04 pm

Subiectul 3, Concursul centrelor de excelenta 2008

Post by Bogdan Cebere »

Fie \( f,g :[a,b] \to R (0<a<b) \) doua functii continue pe \( [a,b] \) si derivabile pe \( (a,b) \). Daca \( g \) este strict crescatoare atunci exista \( c \in (a,b) \) astfel incat \( \frac{2}{g(a)-g(c)}<\frac{f^{\prime} (c)}{g^{\prime} (c)} < \frac {2}{g(b)-g(c)}. \)
Post Reply

Return to “Analiza matematica”