Sa se arate ca in triunghiul \( A \)- dreptunghic \( ABC \) exista relatia
\( h+\max\{b,c\}\le\frac {3a\sqrt 3}{4} \), unde \( h \) este distanta varfului \( A \) la latura opusa.
O ineg. intr-un triunghi dreptunghic (Own).
Moderators: Bogdan Posa, Laurian Filip
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
O ineg. intr-un triunghi dreptunghic (Own).
Last edited by Virgil Nicula on Fri Mar 14, 2008 11:44 pm, edited 2 times in total.
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Presupunem WLOG \( b \ge c > 0 \) si deci \( b = c + t \), \( t \ge 0 \). Avem de aratat \( 4(c+t)\sqrt{2c^2 + 2ct + t^2} \) \( \le (2c^2+2ct+t^2) \cdot 3\sqrt{3} - 4c(c+t) \). Membrul drept este pozitiv, iar dupa o ridicare la patrat si cu putina rabdare, este probabila o concluzie. De asemenea putem norma prin \( t \in \{0, 1\} \).
Last edited by Filip Chindea on Sat Feb 02, 2008 10:18 pm, edited 1 time in total.
Life is complex: it has real and imaginary components.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Exista si o solutie frumoasa pentru aceasta problema dupa cum urmeaza:
Ducem \( A\prime \) simetricul lui \( A \) fata de ipotenuza \( BC \) a triunghiului dreptunghic \( ABC \). Astfel, punctele \( A, B, C, A\prime \) sunt conciclice in cercul de raza \( R=\frac{a}{2} \). Acum luam la rost triunghiul \( AA\prime C \). Folosind inegalitatea lui Mitrinovic, anume: \( p\leq\frac{3\sqrt{3}}{2}R \) (care dupa parerea mea se face in clasa 9-a), vom obtine ca \( \frac{1}{2}(2h_{a}+2b)\leq\frac{3\sqrt{3}}{2}\cdot\frac{a}{2} \), inegalitate care este echivalenta cu \( h_{a}+b\leq\frac{3\sqrt{3}}{4}a \). Analog, aplicand aceeasi inegalitate pentru triunghiul
\( AA\prime B \) va rezulta \( h_{a}+c\leq\frac{3\sqrt{3}}{4}a \), deci concluzia se impune.
Ducem \( A\prime \) simetricul lui \( A \) fata de ipotenuza \( BC \) a triunghiului dreptunghic \( ABC \). Astfel, punctele \( A, B, C, A\prime \) sunt conciclice in cercul de raza \( R=\frac{a}{2} \). Acum luam la rost triunghiul \( AA\prime C \). Folosind inegalitatea lui Mitrinovic, anume: \( p\leq\frac{3\sqrt{3}}{2}R \) (care dupa parerea mea se face in clasa 9-a), vom obtine ca \( \frac{1}{2}(2h_{a}+2b)\leq\frac{3\sqrt{3}}{2}\cdot\frac{a}{2} \), inegalitate care este echivalenta cu \( h_{a}+b\leq\frac{3\sqrt{3}}{4}a \). Analog, aplicand aceeasi inegalitate pentru triunghiul
\( AA\prime B \) va rezulta \( h_{a}+c\leq\frac{3\sqrt{3}}{4}a \), deci concluzia se impune.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.