C:1079, G.M. 1/1991
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
C:1079, G.M. 1/1991
Aratati ca, oricare ar fi numerele reale strict pozitive \( x,y,z \), are loc inegalitatea: \( \frac{x}{13x+y+z}+\frac{y}{x+13y+z}+\frac{z}{x+y+13z} \leq \frac{1}{5} \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Ideea generala la astfel de inegalitati: se noteaza numitorii cu \( a,b,c \) si se obtine un sistem din care se obtin \( x,y,z \) din \( a,b,c \) astfel:
\( x=\frac{1}{12}(a-\frac{a+b+c}{15}) \) si analoagele. Inegalitatea este echivalenta cu:
\( \sum\frac{1}{12}(\frac{14}{15}-\frac{b+c}{15a})\leq \frac{1}{5}\Leftrightarrow \frac{42}{15}-\sum\frac{b+c}{15a}\leq \frac{12}{5}\Leftrightarrow \sum\frac{b+c}{a}\geq 6 \), ceea ce e cunoscut.
O problema mai serioasa ar fi sa determinati numerele \( p \) care pot fi inlocuite in locul lui 13 in inegalitate pentru ca \( \sum\frac{x}{px+y+z}\leq \frac{3}{p+2} \).
\( x=\frac{1}{12}(a-\frac{a+b+c}{15}) \) si analoagele. Inegalitatea este echivalenta cu:
\( \sum\frac{1}{12}(\frac{14}{15}-\frac{b+c}{15a})\leq \frac{1}{5}\Leftrightarrow \frac{42}{15}-\sum\frac{b+c}{15a}\leq \frac{12}{5}\Leftrightarrow \sum\frac{b+c}{a}\geq 6 \), ceea ce e cunoscut.
O problema mai serioasa ar fi sa determinati numerele \( p \) care pot fi inlocuite in locul lui 13 in inegalitate pentru ca \( \sum\frac{x}{px+y+z}\leq \frac{3}{p+2} \).
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Re: C:1079, G.M. 1/1991
Claudiu Mandrila wrote:O usoara extindere. \( \left\|\ \begin {array} {c}
\{\ a\ ,\ b\ ,\ c\ ,\ x\ ,\ y\ ,\ z\ \}\subset (0,\infty )\\\\
c\le b\le \sqrt {ac}\le a \end{array}\ \right\| \) \( \Longrightarrow \) \( \frac{x}{ax+by+cz}+\frac{y}{cx+ay+bz}+\frac{z}{bx+cy+az} \leq \frac{3}{a+b+c} \) .
Last edited by Virgil Nicula on Thu May 29, 2008 1:23 am, edited 2 times in total.
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
Fie \( S=x+y+z \)
\( \sum_{cyc}{} {\frac {1}{p-1+ \frac {S}{x}}} \) \( \leq \) \( \frac {3}{p+2} \) \( \Leftrightarrow \) \( \sum_{cyc}{} {\frac {p-1}{p-1 + \frac {S}{x}}} \) \( \leq \) \( \frac {3(p-1)}{p+2} \) \( \Leftrightarrow \) \( 3 - \frac {3(p-1)}{p+2} \) \( \leq \) \( \sum_{cyc}{} {\frac {\frac {S}{x}}{p-1 + \frac {S}{x}}} \) \( \Leftrightarrow \)
\( \Leftrightarrow \) \( \frac {9}{p+2} \) \( \leq \) \( \sum_{cyc}{} {\frac {1}{\frac {(p-1)x}{S} + 1}} \) (1)
dar \( \sum_{cyc}{} {\frac {1}{\frac {(p-1)x}{S} + 1}} \) \( \frac {Cauchy}{\geq} \) \( \frac {9}{p-1 +3} = \frac {9}{p+2} \)
Asadar (1) este indeplinita pentru oricare \( p \geq 1 \).
\( \sum_{cyc}{} {\frac {1}{p-1+ \frac {S}{x}}} \) \( \leq \) \( \frac {3}{p+2} \) \( \Leftrightarrow \) \( \sum_{cyc}{} {\frac {p-1}{p-1 + \frac {S}{x}}} \) \( \leq \) \( \frac {3(p-1)}{p+2} \) \( \Leftrightarrow \) \( 3 - \frac {3(p-1)}{p+2} \) \( \leq \) \( \sum_{cyc}{} {\frac {\frac {S}{x}}{p-1 + \frac {S}{x}}} \) \( \Leftrightarrow \)
\( \Leftrightarrow \) \( \frac {9}{p+2} \) \( \leq \) \( \sum_{cyc}{} {\frac {1}{\frac {(p-1)x}{S} + 1}} \) (1)
dar \( \sum_{cyc}{} {\frac {1}{\frac {(p-1)x}{S} + 1}} \) \( \frac {Cauchy}{\geq} \) \( \frac {9}{p-1 +3} = \frac {9}{p+2} \)
Asadar (1) este indeplinita pentru oricare \( p \geq 1 \).
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
The Faculty of Automatic Control and Computers