Fie \( x,y,z\in(0,\infty) \) astfel ca \( xyz=1 \). Sa se arate ca
\( \frac{xy}{1+z^2}+\frac{yz}{1+x^2}+\frac{zx}{1+y^2}\geq\frac{3}{2} \).
Marius Mainea, RMT 1/2008
O inegalitate elementara
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Avem \( \sum \frac{xy}{1+z^2}=\sum \frac{(xy)^2}{xy+xz\cdot yz} \). Renotam \( xy=a,\ yz=b, zx=c \) si avem deasemenea \( abc=1 \).
Inegalitatea devine: \( \sum \frac{a^2}{a+bc}\geq \frac{3}{2} \). Din inegalitatea CBS obtinem \( \sum \frac{a^2}{a+bc}\geq \frac{(\sum a)^2}{\sum a+\sum ab} \).
Acum, daca aplicam inegalitatea mediilor pentru \( a^2, a^2 , bc \) avem \( 2a^2+bc \geq 3a \). Insumam toate inegalitatile analoage si avem
\( 2\sum a^2+\sum ab\geq 3\sum a \Leftrightarrow 2(a+b+c)^2\geq 3(\sum a+\sum ab) \), adica \( \frac{(\sum a)^2}{\sum a+\sum ab}\geq \frac{3}{2} \). Deci am terminat
Inegalitatea devine: \( \sum \frac{a^2}{a+bc}\geq \frac{3}{2} \). Din inegalitatea CBS obtinem \( \sum \frac{a^2}{a+bc}\geq \frac{(\sum a)^2}{\sum a+\sum ab} \).
Acum, daca aplicam inegalitatea mediilor pentru \( a^2, a^2 , bc \) avem \( 2a^2+bc \geq 3a \). Insumam toate inegalitatile analoage si avem
\( 2\sum a^2+\sum ab\geq 3\sum a \Leftrightarrow 2(a+b+c)^2\geq 3(\sum a+\sum ab) \), adica \( \frac{(\sum a)^2}{\sum a+\sum ab}\geq \frac{3}{2} \). Deci am terminat
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Solutia pe care am dat-o eu:
Pentru inceput \(
\frac{{xy}}
{{1 + z^2 }} = \frac{1}
{{z\left( {1 + z^2 } \right)}} = \frac{{z^2 + 1}}
{{z\left( {1 + z^2 } \right)}} - \frac{{z^2 }}
{{z\left( {1 + z^2 } \right)}} = \frac{1}
{z} - \frac{z}
{{1 + z^2 }}
\) si analoagele.... .
Obtinem ca
\(
\sum {\frac{{xy}}
{{1 + z^2 }} = \sum {\frac{1}
{z} - \frac{z}
{{1 + z^2 }}} } \).
Din faptul ca \( x^2 + 1 \geq 2x \) si \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \sqrt[3]{\frac{1}{xyz}}= 3 \) rezulta cerinta...
Pentru inceput \(
\frac{{xy}}
{{1 + z^2 }} = \frac{1}
{{z\left( {1 + z^2 } \right)}} = \frac{{z^2 + 1}}
{{z\left( {1 + z^2 } \right)}} - \frac{{z^2 }}
{{z\left( {1 + z^2 } \right)}} = \frac{1}
{z} - \frac{z}
{{1 + z^2 }}
\) si analoagele.... .
Obtinem ca
\(
\sum {\frac{{xy}}
{{1 + z^2 }} = \sum {\frac{1}
{z} - \frac{z}
{{1 + z^2 }}} } \).
Din faptul ca \( x^2 + 1 \geq 2x \) si \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \sqrt[3]{\frac{1}{xyz}}= 3 \) rezulta cerinta...
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)