Inegalitate din lista scurta 2008

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Inegalitate din lista scurta 2008

Post by Marius Dragoi »

Demonstrati ca pentru oricare trei numere reale strict pozitive \( a,b,c \) cu \( abc=1 \) avem inegalitatea:

\( \sum_{ciclic}{} {\frac {a^2+b^2}{a^4+b^4}} \leq a+b+c \).

ONM Shortlist 2008, Molea F. Gheorghe
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

\( \frac{a^2+b^2}{a^4+b^4}\leq\frac{2}{a^2+b^2}\leq\frac{1}{ab}=c \)
Analog, \( \frac{b^2+c^2}{b^4+c^4}\leq a \) si \( \frac{c^2+a^2}{c^4+a^4}\leq b \)
Prin insumare rezulta concluzia.
Post Reply

Return to “Clasa a VIII-a”