Calculati
\( \int_0^{2\pi}\frac{1}{\sin x +2} \).
Calcul Riemann
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
- Ciprian Oprisa
- Pitagora
- Posts: 55
- Joined: Tue Feb 19, 2008 8:01 pm
- Location: Lyon sau Cluj sau Baia de Cris
\( \sin{x}=\frac{e^{jx}-e^{-jx}}{2j} \)
\( \Rightarrow \int\limits_0^{2\pi}\frac{dx}{2+\sin{x}}=\int\limits_0^{2\pi}\frac{2jdx}{4j+e^{jx}-e^{-jx}}=
\int\limits_0^{2\pi}\frac{2je^{jx}dx}{e^{2jx}+4je^{jx}-1}=
\int\limits_{|z|=1}\frac{2dz}{z^2+4jz-1} \)
Singurul pol aflat in domeniul marginit de curba \( |z|=1 \) este \( z=j(\sqrt{3}-2) \), deci conform teoremei reziduurilor, integrala noastra devine
\( 2\pi j\frac{2}{2\cdot j(\sqrt{3}-2)+4j}=\frac{2\pi}{\sqrt{3}} \).
Ok, stiu ca rezolvarea nu e de liceu, dar e cea mai scurta pe care o stiu
\( \Rightarrow \int\limits_0^{2\pi}\frac{dx}{2+\sin{x}}=\int\limits_0^{2\pi}\frac{2jdx}{4j+e^{jx}-e^{-jx}}=
\int\limits_0^{2\pi}\frac{2je^{jx}dx}{e^{2jx}+4je^{jx}-1}=
\int\limits_{|z|=1}\frac{2dz}{z^2+4jz-1} \)
Singurul pol aflat in domeniul marginit de curba \( |z|=1 \) este \( z=j(\sqrt{3}-2) \), deci conform teoremei reziduurilor, integrala noastra devine
\( 2\pi j\frac{2}{2\cdot j(\sqrt{3}-2)+4j}=\frac{2\pi}{\sqrt{3}} \).
Ok, stiu ca rezolvarea nu e de liceu, dar e cea mai scurta pe care o stiu
Un lucru este ceea ce este, nu ceea ce pare a fi.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
O alta idee tot asa scurta e calculul unei primitive pe intervalul \( (-\pi,\pi) \) cu schimbarea de variabila \( t=\tan \frac{x}{2} \) si apoi prelungirea ei prin continuitate pe \( [-\pi,\pi] \).
\( \int_{0}^{2\pi}\frac{1}{\sin x+2}dx=\int_{-\pi}^{\pi}\frac{1}{2+\sin\frac{x}{2}}dx=F(x)|_{-\pi}^\pi \), unde \( F(x) \) este o primitiva a lui \( f \) pe \( [-\pi,\pi] \).
Calculam acum o primitiva a lui \( f \) pe intervalul deschis, asa cum am zis mai sus:
\( \int\frac{1}{2+\sin x}dx=\int\frac{\frac{1}{2}(\tan^2 \frac{x}{2}+1)}{\tan^2 x+\tan x+1}dx=\frac{2}{\sqrt{3}}\arctan \frac{2\tan\frac{x}{2}}{\sqrt{3}}+\mathcal C \).
Prelungim prin continuitate functia obtinuta si avem o primitiva a functiei cautate: \( F(x)=\left\{\begin{array}\frac{\pi}{\sqrt{3}},\ x=\pi \\ \frac{2}{\sqrt{3}}\arctan \frac{2\tan\frac{x}{2}}{\sqrt{3}},\ x \in (-\pi,\pi) \\
-\frac{\pi}{\sqrt{3}},\ x=-\pi \end{array} \).
Deci, din teorema Leibniz Newton, integrala cautata este \( \frac{2\pi}{\sqrt{3} \).
\( \int_{0}^{2\pi}\frac{1}{\sin x+2}dx=\int_{-\pi}^{\pi}\frac{1}{2+\sin\frac{x}{2}}dx=F(x)|_{-\pi}^\pi \), unde \( F(x) \) este o primitiva a lui \( f \) pe \( [-\pi,\pi] \).
Calculam acum o primitiva a lui \( f \) pe intervalul deschis, asa cum am zis mai sus:
\( \int\frac{1}{2+\sin x}dx=\int\frac{\frac{1}{2}(\tan^2 \frac{x}{2}+1)}{\tan^2 x+\tan x+1}dx=\frac{2}{\sqrt{3}}\arctan \frac{2\tan\frac{x}{2}}{\sqrt{3}}+\mathcal C \).
Prelungim prin continuitate functia obtinuta si avem o primitiva a functiei cautate: \( F(x)=\left\{\begin{array}\frac{\pi}{\sqrt{3}},\ x=\pi \\ \frac{2}{\sqrt{3}}\arctan \frac{2\tan\frac{x}{2}}{\sqrt{3}},\ x \in (-\pi,\pi) \\
-\frac{\pi}{\sqrt{3}},\ x=-\pi \end{array} \).
Deci, din teorema Leibniz Newton, integrala cautata este \( \frac{2\pi}{\sqrt{3} \).