Concursul 'Marian Tarina' 2008 pb 3
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
Concursul 'Marian Tarina' 2008 pb 3
Se considera functia \( f_n :\mathbb{R} \to \mathbb{R} \), \( f_n(x)=x^n+2008x-2001 \) pentru \( n\in \mathbb{N}^* \). Notam cu \( (a_n) \) sirul radacinilor pozitive ale ecuatiei \( f_n(x)=0 \). Studiati monotonia sirului \( (a_n) \).
A mathematician is a machine for turning coffee into theorems.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Derivam si obtinem ca \( f_n \) sunt crescatoare pe \( [0,\infty) \).
Cum \( f_n(0)<0<f_n(1) \) pentru orice \( n \), rezulta ca exista o singura radacina a ecuatiei \( f_n(x)=0 \), si aceasta e \( a_n \in (0,1) \).
\( f_{n+1}(x)-f_n(x)=x^{n+1}-x^n<0 \) pentru orice \( x \in (0,1) \).
Presupunem ca \( a_{n+1}<a_n \). Atunci \( f_n(a_{n+1})<f_n(a_n)=0 \) si \( f_{n+1}(a_{n+1})-f_n(a_{n+1})=-f_n(a_{n+1})<0 \). Contradictie!
Cazul de egalitate nu se poate.
Deci sirul este strict crescator.
Cum \( f_n(0)<0<f_n(1) \) pentru orice \( n \), rezulta ca exista o singura radacina a ecuatiei \( f_n(x)=0 \), si aceasta e \( a_n \in (0,1) \).
\( f_{n+1}(x)-f_n(x)=x^{n+1}-x^n<0 \) pentru orice \( x \in (0,1) \).
Presupunem ca \( a_{n+1}<a_n \). Atunci \( f_n(a_{n+1})<f_n(a_n)=0 \) si \( f_{n+1}(a_{n+1})-f_n(a_{n+1})=-f_n(a_{n+1})<0 \). Contradictie!
Cazul de egalitate nu se poate.
Deci sirul este strict crescator.