O.G.: 489, G.M. 12/2006, V. Chiriac

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

O.G.: 489, G.M. 12/2006, V. Chiriac

Post by Claudiu Mindrila »

Sa se determine \(
x,y \in \mathbb{Z}

\)
care verifica egalitatea: \(
\sqrt {10 - x} + \sqrt {y + 3} = 1 + \left| {x - y} \right|

\)


O.G.: 489, G.M. 12/2006, V. Chiriac)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

Observam ca: \( x=10-a^2 \) si \( y=b^2-3 \) , unde \( a,b \in Z \).
\( \Rightarrow |a|+|b|=1+|13-(a^2+b^2)| \geq 1+|a^2+b^2|-13 = a^2+b^2-12 \) \( \Rightarrow |a|+|b|+12 \geq a^2+b^2 \) \( \Rightarrow a,b\in [-4,...,4] \)
Se trateaza relativ usor toate cazurile si obtinem perechile: \( x,y\in {(-6,-3)},{(1,-2)},{(1,-3)},{(9,6)},{(10,13)} \).
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Clasa a VII-a”