sin si cos
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova
sin si cos
Fie \( a,b\in (0,\infty) \) si \( x\in R \) astfel incat \( \frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b} \). Sa se arate ca \( \frac{\sin^8x}{a}+\frac{\cos^8x}{b}=\frac{1}{(a+b)^3} \).
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Recomand userilor debutanti sa fie foarte atenti in redactarea problemelor. Poate asa ar fi fost corect enuntul :
4\sin^4x=(2\sin^2x)^2=(1-\cos 2x)^2\\\\
4\cos^4x=(2\cos^2x)^2=(1+\cos 2x)^2\end{array} \) . Asadar, \( \underline {\overline {\left|\ \frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b}\ \right|}}\ \Longleftrightarrow \)
\( b(a+b)(1-\cos 2x)^2+a(a+b)(1+\cos 2x)^2=4ab\ \Longleftrightarrow\ (a+b)^2\cos^22x+2(a^2-b^2)\cos 2x+(a-b)^2=0\ \Longleftrightarrow \)
\( \left[(a+b)\cos 2x+(a-b)\right]^2=0\ \Longleftrightarrow\ \underline {\overline {\left|\ \cos 2x=\frac {b-a}{b+a}\ \right|}} \) . Prin urmare, \( \left\|\begin{array}{c}
\sin^2x=\frac {a}{a+b}\\\\
\cos^2x=\frac {b}{a+b}\end{array}\ \Longrightarrow\ \frac{\sin^{2n}x}{a^{n-1}}+\frac{\cos^{2n}x}{b^{n-1}}=\frac {1}{(a+b)^{n-1} \) .
Exercitiul pe care il cunosc eu este o usoara extindere a celui de sus :BogdanCNFB wrote: Fie \( a,b\in (0,\infty) \) si \( x\in R \) astfel incat \( \frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b} \). Sa se arate ca \( \underline {\overline {\left\|\ \frac{\sin^8x}{a^3}+\frac{\cos^8x}{b^3}=\frac{1}{(a+b)^3}\ \right\|}} \).
Demonstratie. Folosim identitatile cunoscute \( \left\|\begin{array}{c}Fie \( n\in\mathbb N \) , \( a,b\in (0,\infty) \) si \( x\in R \) astfel incat \( \frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b} \). Sa se arate ca \( \underline {\overline {\left\|\ \frac{\sin^{2n}x}{a^{n-1}}+\frac{\cos^{2n}x}{b^{n-1}}=\frac {1}{(a+b)^{n-1}}\ \right\|}} \).
4\sin^4x=(2\sin^2x)^2=(1-\cos 2x)^2\\\\
4\cos^4x=(2\cos^2x)^2=(1+\cos 2x)^2\end{array} \) . Asadar, \( \underline {\overline {\left|\ \frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b}\ \right|}}\ \Longleftrightarrow \)
\( b(a+b)(1-\cos 2x)^2+a(a+b)(1+\cos 2x)^2=4ab\ \Longleftrightarrow\ (a+b)^2\cos^22x+2(a^2-b^2)\cos 2x+(a-b)^2=0\ \Longleftrightarrow \)
\( \left[(a+b)\cos 2x+(a-b)\right]^2=0\ \Longleftrightarrow\ \underline {\overline {\left|\ \cos 2x=\frac {b-a}{b+a}\ \right|}} \) . Prin urmare, \( \left\|\begin{array}{c}
\sin^2x=\frac {a}{a+b}\\\\
\cos^2x=\frac {b}{a+b}\end{array}\ \Longrightarrow\ \frac{\sin^{2n}x}{a^{n-1}}+\frac{\cos^{2n}x}{b^{n-1}}=\frac {1}{(a+b)^{n-1} \) .
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova