"Marian Tarina", 2006

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

"Marian Tarina", 2006

Post by Claudiu Mindrila »

Sa se determine \( n \in \mathbb{N}^* \) astfel incat \( \frac{{2\sqrt n - 5\sqrt 3 }}{{\sqrt 3 + \sqrt n }} \in \mathbb{Z} \).

Concursul Marian Tarina, 2006, Mariana Ursu si Gheorghe Lobont
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Ahiles
Euclid
Posts: 28
Joined: Thu Apr 17, 2008 4:26 pm

Post by Ahiles »

Problema foarte cunoscuta.... Asemenea problema cu radicali a fost la Olimpiada Municipala Chisinau in clasa 7.
\( \frac{2\sqrt{n}-5\sqrt{3}}{\sqrt{3}+\sqrt{n}}=\frac{2(\sqrt{n}+\sqrt{3})-7\sqrt{3}}{\sqrt{3}+\sqrt{n}}= 2-\frac{7\sqrt{3}}{\sqrt{3}+\sqrt{n}}. \)
Deci \( \frac{7\sqrt{3}}{\sqrt{3}+\sqrt{n}}\in \mathbb{Z} \).
De unde \( \sqrt{3}+\sqrt{n}\in \{\sqrt{3} ; 7\sqrt{3}} \), deci \( \sqrt{n}\in \{0;6\sqrt{3}\} \) sau \( n\in\{0; 108} \).
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Ahiles wrote:Deci \( \frac{7\sqrt{3}}{\sqrt{3}+\sqrt{n}}\in \mathbb{Z} \). De unde \( \sqrt{3}+\sqrt{n}\in \{\sqrt{3} ; 7\sqrt{3}} \) .
DE CE ?!

Incearca n oricare dintre 12 , 48 , 300 , 30000, 243, etc si ai sa vezi ca merge.

Asa ca degeaba este ... foarte cunoscuta.
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Indicatie: Amplificati fractia ce trebuie sa apartina \( \mathbb{Z} \) cu \( \sqrt 3-sqrt n \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a VII-a”