Comutativitate in inel
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
Comutativitate in inel
Fie \( (A,+,\cdot) \) un inel si \( n\in \mathbb{N} \), \( n\geq 3 \) astfel incat \( x^n=x, \forall x\in A \). Demonstrati ca \( xy^{n-1}=y^{n-1}x, \forall x,y \in A. \)
Tin minte dintr-un post al lui grobber (vezi http://www.mathlinks.ro/viewtopic.php?t=57581) ca daca \( x^n=x \) atunci \( t_x=x^{n-1} \) este un element idempotent. Apoi, cum in inelul nostru e adevarat ca \( a^2=0\to a=0 \), atunci din egalitatile \( (yt_x-t_x y t_x)^2=(t_x y- t_x y t_x)^2=0 \) rezulta cerinta.