O relatie trigonometrica particulara

Post Reply
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

O relatie trigonometrica particulara

Post by Virgil Nicula »

Sa se arate ca \( \tan 10^{\circ}=\tan 20^{\circ}\cdot\tan 30^{\circ}\cdot\tan 40^{\circ} \) .
User avatar
mumble
Euclid
Posts: 48
Joined: Wed Jan 30, 2008 10:25 pm

Post by mumble »

Iata o demonstratie cat se poate de "ne-spectaculoasa" :).
Identitatea este echivalenta succesiv cu:
\( sin10^{\circ}cos20^{\circ}cos30^{\circ}cos40^{\circ}=cos10^{\circ}sin20^{\circ}sin30^{\circ}sin40^{\circ}\Leftrightarrow \\ \)
\( 8cos10^{\circ}sin10^{\circ}cos20^{\circ}cos30^{\circ}cos40^{\circ}=8cos^{2}10^{\circ}sin20^{\circ}sin30^{\circ}sin40^{\circ}\Leftrightarrow \\
sin80^{\circ}cos30^{\circ}=8cos^{2}10^{\circ}sin20^{\circ}sin30^{\circ}sin40^{\circ}\Leftrightarrow \\ \)

\( cos30^{\circ}=8sin20^{\circ}sin30^{\circ}sin40^{\circ}sin80^{\circ}\Leftrightarrow \\ \)
\( sin20^{\circ}sin40^{\circ}sin60^{\circ}sin80^{\circ}=\frac{3}{16}. \) \( (*) \)
Identitatea \( (*) \) este cunoscuta. Sa o demonstram:
\( sin20^{\circ}sin40^{\circ}sin60^{\circ}sin80^{\circ}=\frac{(cos20^{\circ}-cos60^{\circ})(cos20^{\circ}-cos140^{\circ})}{4}=\\ \frac{(cos20^{\circ}-\frac{1}{2})(cos20^{\circ}+2cos^{2}20^{\circ}-1)}{4}=\frac{4cos^{3}20^{\circ}-3cos20^{\circ}+1}{8}=\\ \frac{cos60^{\circ}+1}{8}=\frac{3}{16}. \)
Post Reply

Return to “Clasa a 10-a”