rafinare a inegalitatii lui Wirtinger intr-un spatiu Hilbert

Moderator: Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

rafinare a inegalitatii lui Wirtinger intr-un spatiu Hilbert

Post by Cezar Lupu »

Fie \( \mathbb{H} \) un spatiu Hilbert real si \( u:[0,1]\to\mathbb{H} \) derivabila cu derivata continua astfel incat \( u(0)=u(1)=0 \). Aratati ca

\( \int_0^1 |u(t)|^{2}dt\leq\frac{1}{\pi^2}\int_0^1 |u\prime(t)|^{2}dt -\left(\int_0^1|u(t)|\cot\pi tdt\right)^{2} \).


P.S. Chair sunt curios daca acesta rafinare exista pe undeva. :) Eu am cautat in articolele lui Osermann si Ravi Agarwall, dar nu am gasit decat variante ale inegalitatii lui Wirtinger. Un alt articol interesant ar fi si acesta de aici.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Analiza functionala si teorie spectrala”