s(n)

Moderators: Bogdan Posa, Laurian Filip

Post Reply
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

s(n)

Post by mihai++ »

Gasiti o infinitate de numere naturale\( n \), care nu se termina cu 0, astfel incat \( s(n)=s(n^2) \).
( \( s(n) \)=suma cifrelor lui \( n \) )
n-ar fi rau sa fie bine :)
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Observam ca orice numar de forma \( 10^k-1 \) are aceasta proprietate.

Evident \( S(n)=9k. \)

\( n^2={(10^k-1)}^2=10^{2k}-2*{10}^k+1 \)
\( n^2=99...98000...01 \)
cu \( (k-1) \) de \( 9 \)

\( s(n^2)=9k=s(n) \)
Last edited by Laurian Filip on Sun Apr 06, 2008 8:48 am, edited 1 time in total.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

e foarte buna rezolvarea dar are o scapare de typing! sa nu scrii n si la numar si la exponent :)
n-ar fi rau sa fie bine :)
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Inca nu m-am obisnuit cu scrisul problemelor la calculator. Dar noa acuma ca ma uit chiar arata aiurea cu n si la numar si la putere.
Post Reply

Return to “Clasa a VII-a”