O problema cu siruri

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

O problema cu siruri

Post by Marius Dragoi »

Se considera sirul \( {(x_n)}_{n \geq 1} \) dat de relatia \( x_{n+1}=n+x_n^2 \), unde \( x_1=1 \). Demonstrati ca exista un numar real pozitiv \( k \) astfel incat \( \lim_{n\to\infty}\ \frac {x_n}{k^{2^n}}=1 \).
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Analiza matematica”