Fie \( (A,+,\cdot) \) un inel cu cel putin doua elemente astfel incat: \( xy=1 \Rightarrow\ yx=1,\ B=\{x \in A |x^{2}+1=0\} \neq \emptyset \) si \( xa=ax, \) \( \forall x \in B, \) \( \forall a \in A \). Sa se arate ca daca \( a,b \in A \) si \( a^{3}+b^{3}=0 \), atunci \( ab=1+b^{2}a^{2} \) daca si numai daca \( ba=1+a^{2}b^{2} \).
D. M. Batinetu - Giurgiu, GM 2/1994
Problema din gazeta cu calcule intr-un inel
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Fie \( \alpha\in A \) astfel incat \( \alpha^2=-1 \) .
Presupunand ca \( ab=1+b^2a^2 \) avem
\( (b+\alpha a^2)(a+\alpha b^2)=ba-a^2b^2+\alpha(a^3+b^3)=1+\alpha\cdot 0=1 \)
asadar
\( (a+\alpha b^2)(b+\alpha a^2)=1 \) sau
\( ab-b^2a^2+\alpha(b^3+a^3)=1 \) sau \( ab-b^2a^2=1 \) c.c.t.d.
Reciproc analog.
Presupunand ca \( ab=1+b^2a^2 \) avem
\( (b+\alpha a^2)(a+\alpha b^2)=ba-a^2b^2+\alpha(a^3+b^3)=1+\alpha\cdot 0=1 \)
asadar
\( (a+\alpha b^2)(b+\alpha a^2)=1 \) sau
\( ab-b^2a^2+\alpha(b^3+a^3)=1 \) sau \( ab-b^2a^2=1 \) c.c.t.d.
Reciproc analog.