Functie neinjectiva

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
Razvan Balan
Euclid
Posts: 16
Joined: Tue Feb 19, 2008 10:10 pm

Functie neinjectiva

Post by Razvan Balan »

Exista functii injective \( f:R\to R \) astfel incat \( f(x^2)-f^2(x)\geq \frac{1}{4} \), oricare ar fi numarul real x?

Titu Andreescu
Bogdan Cebere
Thales
Posts: 145
Joined: Sun Nov 04, 2007 1:04 pm

Post by Bogdan Cebere »

Pentru x=1 avem \( 0\geq({f(1)-\frac{1}{2}})^2 \).
Pentru x=0 avem\( 0\geq({f(0)-\frac{1}{2}})^2 \), deci \( f(0)=f(1)={\frac{1}{2}} \).
Post Reply

Return to “Clasa a X-a”