O inegalitate frumoasa

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

O inegalitate frumoasa

Post by Marius Dragoi »

Aratati ca pentru orice \( a,b,c>0 \) avem:
\( \sum_{ciclic}^{} \sqrt {a^4+a^2b^2+b^4} \geq \sum_{ciclic}^{} \sqrt {2a^4+a^2bc} \)

Gazeta Matematica
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

\( \sum_{ciclic}^{} {\sqrt {a^4+a^2b^2+b^4} = \sum_{ciclic}^{} {\sqrt {(a^4+\frac{a^2b^2}{2}) + (b^4+\frac{a^2b^2}{2})} \frac{Cauchy}{\geq} \)
\( {\frac{1}{\sqrt 2}{\sum_{ciclic}^{}{({\sqrt {a^4+\frac{a^2b^2}{2}}})+({\sqrt{b^4+\frac{a^2b^2}{2}}})} = {\frac{1}{\sqrt2}}{\sum_{ciclic}^{}{({\sqrt{a^4+\frac{a^2b^2}{2}}})+({\sqrt{a^4+\frac{a^2c^2}{2}}})} \frac{m_a-m_g}{\geq} \)
\( {\sqrt2}{\sum_{ciclic}^{}{({({a^4+ \frac{a^2b^2}{2}})({a^4+ \frac{a^2c^2}{2}})})}^{\frac{1}{4}} \frac{Cauchy}{\geq} {\sqrt 2}{\sum_{ciclic}^{}{\sqrt{a^4+\frac{a^2bc}{2}}} = \sum_{ciclic}^{}{\sqrt{2a^4+a^2bc}} \)
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Clasa a IX-a”