Functie derivabila, pozitiva si neconstanta
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Bogdan Posa
- Pitagora
- Posts: 77
- Joined: Fri Dec 14, 2007 3:47 pm
- Location: Motru , Gorj , Romania
- Contact:
Functie derivabila, pozitiva si neconstanta
Fie f o functie derivabila, pozitiva si neconstanta pe \( [0,1] \) astfel incat \( f(0)=0 \). Aratati ca exista \( c \in [0,1] \) astfel incat \( f(c) < f^{\prime} (c) \).
Last edited by Bogdan Posa on Tue Apr 08, 2008 8:28 pm, edited 1 time in total.
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Re: Functie derivabila si neconstanta
Hmmm, interesanta problema.Bogdan Posa wrote:Fie f o functie derivabila si neconstanta pe \( [0,1] \) astfel incat \( f(0)=0 \). Aratati ca exista \( c \in [0,1] \) astfel incat \( f(c) < f^{\prime} (c) \).
Solutie.
Consideram functia auxiliara \( h:[0,1]\to\mathbb{R} \) derivabila, definita prin \( h(t)=e^{-t}f(t) \). Un calcul simplu arata ca \( h\prime(t)=e^{-t}(f\prime(t)-f(t)) \). Sa presupunem prin reducere la absurd ca \( f\prime(t)\leq f(t)\forall t\in (0,1) \). Atunci \( h\prime(t)\leq 0 \), deci \( h \) este descrescatoare, \( h(t)\leq h(0)=0 \), contradictie cu faptul ca \( h \) este pozitiva. \( \qed \)
Observatie.
Incercati sa rezolvati ecuatia diferentiala \( y\prime-y=-\psi \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.