Ireductibilitate in extinderi de corpuri finite

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Ireductibilitate in extinderi de corpuri finite

Post by bae »

1. Fie \( K \) un corp cu \( 2^n \) elemente, \( n\in\mathbb{N}^* \) si polinomul \( f = X^4 + X + 1 \). Sa se arate ca:
a) daca n este par, atunci f este reductibil in K[X];
b) daca n este impar, atunci f este ireductibil in K[X].

OJM 2007

Sigur, frumoasa problema, dar caz particular dintr-o problema pe care o mai fac pe la seminar la anul II din cand in cand. Sa o enuntam in cazul general:

2. Fie \( k\subset K \) o extindere de corpuri finite cu \( [K:k]=n \) si \( f\in k[X] \) ireductibil de grad \( m \). Sa se arate ca \( f \) este ireductibil in \( K[X] \) daca si numai daca \( (m,n)=1 \).
Last edited by bae on Tue Feb 23, 2010 2:34 am, edited 1 time in total.
User avatar
bogdanl_yex
Pitagora
Posts: 91
Joined: Thu Jan 31, 2008 9:58 pm
Location: Bucuresti

Post by bogdanl_yex »

Cum \( |K|=2^{n} \) si \( K \) este corp rezulta ca \( 2 \) este caracteristica, deci \( 1+1=0 \). Deoarece K este finit rezulta ca el este comutativ (teorema lui Wedderburn).
a) Daca \( n=2k \Rightarrow |K^{*}|=2^{n}-1 \Rightarrow |K^{*}|=2^{2k}-1 \Rightarrow |K^{*}|=M_{3} \). Deci conform teoremei lui Cauchy exista \( \alpha \in K^{*} \) cu \( ord(\alpha)=3 \). Deci \( (\alpha -1)(\alpha^{2}+\alpha+1)=0 \Rightarrow \alpha^{2}+\alpha+1=0 \)
\( X^{4}+X+1=X^{4}+X-1=X^{4}+X^{3}(1+1)+X^{2}((1+1)\alpha+1+1)+X((1+1)\alpha+1)+\alpha^{2}+\alpha
= \)

\( =(X^{2}+X+\alpha)(X^{2}+X+\alpha+1) \). Deci pentru \( n=2k \) polinomul este reductibil in \( K[X] \).
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
User avatar
bogdanl_yex
Pitagora
Posts: 91
Joined: Thu Jan 31, 2008 9:58 pm
Location: Bucuresti

Si punctul b)...

Post by bogdanl_yex »

Presupunem ca polinomul ar fi reductibil in \( K[X] \). Avem doua cazuri: cand polinomul are radacini in \( K \) sau cand se scrie ca produs de doua polinoame de gradul 2.
In primul caz presupunem ca exista \( \beta \in K \) astfel incat \( f(\beta)=0 \). Adica \( \bet^{4}+\beta+1=0 \Rightarrow \beta^{4}+\beta^{3}(1+1)+\beta^{2}(1+1)+\beta+1=0 \Rightarrow (\beta^{2}+\beta)^{2}+(\beta^{2}+\beta)+1=0 \). Deci obtinem ca \( (\beta^{2}+\beta)^{3}=1 \). Dar \( n=2k+1 \Rightarrow 3 \) nu divide \( 2^{2k+1}-1 \). Deci nu exista un element de ordin trei in grupul \( (K^{*},\cdot) \). Deci \( \beta^{2}+\beta=1 \Rightarrow \beta^{2}+\beta-1=0 \Rightarrow \beta^{2}+\beta+1=0 \Rightarrow \beta^{3}=1 \Rightarrow \beta=1 \Rightarrow 1+1+1=0 \Rightarrow 1=0 \), contradictie. Asadar \( f \) nu are radacini in \( K \).
In al doilea caz \( f=(X^{2}+mX+n)(X^{2}+pX+q) \) unde \( m,n,p,q \in K \). Prin calcul si prin identificare de coeficienti obtinem \( m+p=0,n+q+mp=0,mq+np=1,nq=1 \). Deci \( m=p,n+q=-mp=mp=p^{2} \). Dar \( mq+np=1,pq+np=1,p(n+q)=1,n+q=p^{-1} \). Deci \( p^{2}=p^{-1} \Rightarrow p^{3}=1 \Rightarrow p=1 \Rightarrow n=1+q \Rightarrow \)
\( q^{2}+q+1=0 \Rightarrow q^{3}=1\Rightarrow q=1 \Rightarrow 1+1+1=0 \Rightarrow 1=0 \), contradictie. Asadar pentru \( n=2k+1 \) polinomul \( f \) este ireductibil in \( K[X] \).
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
Post Reply

Return to “Algebra”