Sa se calculeze suma

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
moldo
Euclid
Posts: 27
Joined: Sun Sep 30, 2007 1:48 pm
Location: Tg Mures

Sa se calculeze suma

Post by moldo »

Sa se calculeze suma \( S=1+2x+3x^2+.....+nx^{n-1} \) si apoi sa sa arate ca

\( 1+2(1+\frac{1}{n})+3(1+\frac{1}{n})^2+.......+n(1+\frac{1}{n})^{n-1}=n^2. \)
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Trebuie doar sa observi ca

\( S=(1+x+x^2+...+x^{n-1})+x(1+x+x^2+...+x^{n-2})+....+x^{n-2}(x-1)+x^{n-1}= \)
\( \frac{x^n-1+x^n-x+x^n-x^2+...+x^n-x^{n-1}}{x-1}=\frac{nx^n-\frac{x^n-1}{x-1}}{x-1} \) .

Putem scrie sub forma aceasta cand \( x\neq 1 \). Pentru \( x=1, S=\frac{n(n+1)}{2} \).

Inlocuind \( x \)cu \( 1+\frac{1}{n} \) concluzia e evidenta.
Post Reply

Return to “Clasa a IX-a”