Progresie
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
Progresie
Fie progresiile aritmetice \( x=(x_i)_{i\in \mathbb{N}},\ y=(y_i)_{i\in \mathbb{N}} \). Sa se arate ca sirul \( z=(x_iy_i)_{i\in \mathbb{N}} \) este o progresie aritmetica daca si numai daca cel putin una din progresiile \( x,\ y \) este constanta.
Last edited by mihai++ on Sat Feb 02, 2008 4:12 pm, edited 1 time in total.
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
fie a ratia primei progresii si b a celei de a 2a.
\( x_{k+1}=x_k+a \)
\( y_{k+1}=y_k+b \)
de unde \( z_{k+1}=x_k\cdot y_k+x_ka+y_kb+ab \)
\( x_{k+2}=x_k+2a \)
\( y_{k+2}=y_k+2b \)
de unde \( z_{k+2}=x_k\cdot y_k+x_k\cdot 2a+y_k\cdot 2b+4ab \)
cum z este progresie avem \( z_{k+2}-z_{k+1}=z_{k+1}-z_k \)
\( x_k\cdot 2a+y_k\cdot 2b+4ab-(x_ka+y_kb+ab)=x_ka+y_kb+ab \)
\( 4ab=0 \)
adica a sau b este 0 echivalent cu una dintre progresii este constanta.
\( x_{k+1}=x_k+a \)
\( y_{k+1}=y_k+b \)
de unde \( z_{k+1}=x_k\cdot y_k+x_ka+y_kb+ab \)
\( x_{k+2}=x_k+2a \)
\( y_{k+2}=y_k+2b \)
de unde \( z_{k+2}=x_k\cdot y_k+x_k\cdot 2a+y_k\cdot 2b+4ab \)
cum z este progresie avem \( z_{k+2}-z_{k+1}=z_{k+1}-z_k \)
\( x_k\cdot 2a+y_k\cdot 2b+4ab-(x_ka+y_kb+ab)=x_ka+y_kb+ab \)
\( 4ab=0 \)
adica a sau b este 0 echivalent cu una dintre progresii este constanta.