O expresie cu numere complexe

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
Andrei Velicu
Euclid
Posts: 27
Joined: Wed Oct 17, 2007 9:20 am
Location: Constanta

O expresie cu numere complexe

Post by Andrei Velicu »

Fie \( z \in \mathbb{C}^* \) astfel incat \( z+\frac{1}{z}=-\sqrt{3} \) si \( E_{n}=z^n+\frac{1}{z^n}, n\in \mathbb{N}^* \). Determinati multimea \( \left{E_{n} | n\in \mathbb{N}^*\right} \).

OLM Constanta 2008, Prof. Gheorghe Andrei
Last edited by Andrei Velicu on Mon Jan 28, 2008 8:13 pm, edited 1 time in total.
turcas
Pitagora
Posts: 83
Joined: Fri Sep 28, 2007 1:48 pm
Location: Cluj-Napoca
Contact:

Post by turcas »

Fie \( z = r(\cos{a} + i \sin{a}) \) unde \( r > 0 \) si \( a \in [0;2\pi) \) .

Expresia din ipoteza devine :

\( \cos{a}(r+ \frac{1}{r}) + i \sin{a}(r - \frac{1}{r}) = - \sqrt{3} \) .

de aici rezulta ca \( r = 1 \) (partea imaginara trebuie sa fie 0 ) ;

Apoi , inlocuind in relatia din ipoteza , avem :

\( 2 \cos{a} = - \sqrt{3} \) . De aici se disting doua cazuri .

1.) \( a = \frac{5\pi}{6} \Rightarrow E_n = 2 \cdot \cos{n \frac{5\pi}{6}} \) .

2.) \( a = \frac{7\pi}{6} \Rightarrow E_n = 2 \cdot \cos{n \frac{7\pi}{6}} \) .
Post Reply

Return to “Clasa a X-a”