Inegalitate cu logaritmi

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
Andrei Velicu
Euclid
Posts: 27
Joined: Wed Oct 17, 2007 9:20 am
Location: Constanta

Inegalitate cu logaritmi

Post by Andrei Velicu »

Daca \( a, b, c \in (0;1) \) sau \( a, b, c \in (1; \infty) \), atunci aratati ca: \( \log_{a^2b}a+\log_{b^2c}b+\log_{c^2a}c\leq 1 \).

OLM Constanta 2008, Gazeta Matematica

(Pentru \( \sum log_{ab^2} \) inegalitatea devine \( \geq 1 \).)
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Notez x=ln(a), etc atunci inegalitatea de demonstrat devine:

\( \sum \frac{x}{2x+y}\leq 1 \Leftrightarrow \sum \frac{1}{2}\left( 1-\frac{y}{2x+y}\right) \leq 1 \) \( \Leftrightarrow \sum \frac{y}{2x+y}\geq 1 \).

Dar din inegalitatea CBS avem:
\( \sum \frac{y}{2x+y}=\sum \frac{y^2}{2xy+y^2} \geq \frac{(x+y+z)^2}{x^2+y^2+z^2+2(xy+yz+xz)}=1 \).

Procedand analog se poate deomnstra urmatoarea generalizare:
Daca \( k\geq 2p>0 \) si \( a,b,c \in (1,\infty) \) atunci \( \sum log_{a^kb^p}a\leq \frac{3}{k+p} \).
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Clasa a X-a”