O problema data ONM 2004

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

O problema data ONM 2004

Post by Cezar Lupu »

Fie \( f:[0,1]\to\mathbb{R} \) o functie integrabila astfel incat \( \int_0^1 f(x)dx=\int_0^1 xf(x)dx=1 \).
Sa se arate ca \( \int_0^1 f^{2}(x)dx\geq 4 \).

I. Rasa, ONM 2004
Last edited by Cezar Lupu on Thu Jan 31, 2008 2:18 am, edited 2 times in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Post by Alin Galatan »

Cauchy:
\( \int_{0}^{1}f^2(x)dx\cdot\int_{0}^{1}(3x-1)^2dx\geq(\int_{0}^{1}(3x-1)f(x)dx)^2 \).
Bineinteles, se stie ca \( (3x-1)f(x) \) e integrabila, deoarece e produs dintre o continua si o integrabila.
Dezvoltand parantezele, iese imediat
\( \int_{0}^{1}f^2(x)dx\geq (3-1)^2=4 \).
Last edited by Alin Galatan on Wed Sep 26, 2007 5:31 pm, edited 1 time in total.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Da, asta este si solutia mea. De fapt se pot da vreo 9 solutii la problema asta. Marea "provocare" ca sa zic asa este gasirea unui polinom care sa verifice egalitatea din ipoteza si acel polinom este intr-adevar \( p(x)=3x-1 \).

P.S. Surprinzator sau nu, acesta tehnica si bineinteles problema in sine provine din Analiza Numerica ;).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Analiza matematica”