Daca \( a,b,c\geq 0 \) si \( a+b+c=1 \) aratati ca:
\( \frac{a}{\sqrt{b^2+3c}}+\frac{b}{\sqrt{c^2+3a}}+\frac{c}{\sqrt{a^2+3b}}\geq \frac{1}{\sqrt{1+3abc}} \)
Inegalitate cu conditia a+b+c=1
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
Inegalitate cu conditia a+b+c=1
A mathematician is a machine for turning coffee into theorems.
-
pohoatza
Din inegalitatea Holder avem:
\( \left(\sum_{cyc}{\frac{a}{\sqrt{b^{2}+3c}}}\right)^{2}\left(\sum_{cyc}{a(b^{2}+3c)}\right) \geq 1 \).
Deci ne mai ramane sa aratam ca \( 1+3abc \geq \sum_{cyc}{ab^{2}}+3\sum_{cyc}{ab} \).
Care dupa omogenizare (\( a+b+c=1 \)), se reduce la \( \sum_{cyc}{a^{3}} \geq \sum_{cyc}{ab^{2}} \), care este adevarata.
\( \left(\sum_{cyc}{\frac{a}{\sqrt{b^{2}+3c}}}\right)^{2}\left(\sum_{cyc}{a(b^{2}+3c)}\right) \geq 1 \).
Deci ne mai ramane sa aratam ca \( 1+3abc \geq \sum_{cyc}{ab^{2}}+3\sum_{cyc}{ab} \).
Care dupa omogenizare (\( a+b+c=1 \)), se reduce la \( \sum_{cyc}{a^{3}} \geq \sum_{cyc}{ab^{2}} \), care este adevarata.
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti