Fie \( a,\ b,\ c>0 \). Aratati ca \( 1+\frac{1}{6abc}>\frac{3}{a+b+c} \).
Claudiu Mindrila, Revista de Matematica din Timisoara nr. 3/2010
Inegalitate noua
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate noua
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
Din ineg. mediilor avem : \( abc\le\frac{(a+b+c)^3}{3}\Rightarrow 1+\frac{1}{6abc}\ge 1+\frac{1}{\frac{9}{2}(a+b+c)^3}=1+\frac{9}{2(a+b+c)^3} \).
Notand \( a+b+c=x \), obtinem ca \( LHS\ge 1+\frac{9}{2x^3}=\frac{2x^3+9}{2x^3}=\frac{(x^3+x^3+{8})+1}{2x^3}\ge \frac{3\sqrt[3]{x^3\cdot x^3\cdot 2^3}+1}{2x^3}=\frac{3\cdot 2x^2+1}{2x^3}>\frac{6x^2}{2x^3}=\frac{3}{x}=RHS \).
Notand \( a+b+c=x \), obtinem ca \( LHS\ge 1+\frac{9}{2x^3}=\frac{2x^3+9}{2x^3}=\frac{(x^3+x^3+{8})+1}{2x^3}\ge \frac{3\sqrt[3]{x^3\cdot x^3\cdot 2^3}+1}{2x^3}=\frac{3\cdot 2x^2+1}{2x^3}>\frac{6x^2}{2x^3}=\frac{3}{x}=RHS \).
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca