1. \( \frac{1}{1} +\frac{1}{2} +\frac{1}{3} +.....+\frac{1}{2^n-1}<=n \)
n nr nat n>=2
Prin inductie si cand facem P(k+1) apare nu stiu ce..va rog sa ma ajutati
2. \( \frac{1}{1!} +\frac{1}{2!} +\frac{1}{3!} +.....+\frac{1}{n!}< \frac{2n-1}{n} \) ; n>3
dupa ce fac toate etapele ajung la ceva de genu
\( \frac{2k+1}{k}+\frac{1}{(k+1)!}<\frac{2k+3}{k+1} \)
o idee ce fac mai departe pls
Alte doua inegalitati
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
Alte doua inegalitati
Last edited by moldo on Sat Dec 08, 2007 10:01 pm, edited 1 time in total.
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Re: 2 ecuati
Moldo wrote:
1. Prin inductie si cand facem P(k+1) apare nu stiu ce ...
2. \( n > 3 \Rightarrow \frac{1}{1!} +\frac{1}{2!} +\frac{1}{3!} +.....+\frac{1}{n!}< \frac{2n-1}{n} \)
1) Nu inteleg ce doriti.
2) Ne trebuie \( \sum_{k=0}^n \frac{1}{k!} < 3 - \frac{1}{n} \). Insa pentru \( n \ge 4 \) este clar ca
\( \sum_{k=0}^n \frac{1}{k!} < \sum_{k=0}^{\infty} \frac{1}{k!} = e < 2.75 = 3 - \frac{1}{4} \le 3 - \frac{1}{n} \).
1. Prin inductie si cand facem P(k+1) apare nu stiu ce ...
2. \( n > 3 \Rightarrow \frac{1}{1!} +\frac{1}{2!} +\frac{1}{3!} +.....+\frac{1}{n!}< \frac{2n-1}{n} \)
1) Nu inteleg ce doriti.
2) Ne trebuie \( \sum_{k=0}^n \frac{1}{k!} < 3 - \frac{1}{n} \). Insa pentru \( n \ge 4 \) este clar ca
\( \sum_{k=0}^n \frac{1}{k!} < \sum_{k=0}^{\infty} \frac{1}{k!} = e < 2.75 = 3 - \frac{1}{4} \le 3 - \frac{1}{n} \).
Life is complex: it has real and imaginary components.
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
OK, voi incerca o solutie elementara (fara aproximari). Vom folosi faptul evident ca \( n! \ge 2^{n-1} \), pentru orice \( n \in \mathbb{N}_2 \). Cel putin intuitiv, ar trebui sa fie clar ce semnifica \( e \stackrel{not}{=} \sum_{k=0}^{\infty} \frac{1}{k!} \). Acum avem
\( e_n := \sum_{k=0}^n \frac{1}{n!} < e = \sum_{k=0}^6 \frac{1}{k!} + \sum_{k=7}^{\infty} \frac{1}{k!} < 2,7180(5) + \sum_{k=7}^{\infty} \frac{1}{2^{k-1}} = \)
\( 2,7180(5) + 0,03125 < 2,75 \le 3 - \frac{1}{n} \).
\( e_n := \sum_{k=0}^n \frac{1}{n!} < e = \sum_{k=0}^6 \frac{1}{k!} + \sum_{k=7}^{\infty} \frac{1}{k!} < 2,7180(5) + \sum_{k=7}^{\infty} \frac{1}{2^{k-1}} = \)
\( 2,7180(5) + 0,03125 < 2,75 \le 3 - \frac{1}{n} \).
Life is complex: it has real and imaginary components.
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
De fapt acea notatie era inutila. Reiau:
Avem \( n! \ge 2^{n-1} \), pentru orice \( n \ge 2 \). Rezulta
\( e_n \stackrel{not}{=} \sum_{k=0}^n \frac{1}{k!} = e_6 + \sum_{k=7}^n \frac{1}{k!} < 2,7180(5) + \sum_{k=7}^n \frac{1}{2^{n-1}} \le \)
\( 2,7180(5) + \frac{1}{2^6} < 2,75 \le 3 - \frac{1}{n} \), pentru \( n \ge 6 \).
Acum sper ca intentiile mele sunt clarificate, desi evident ca o simpla inductie este recomandata la acest nivel.
Avem \( n! \ge 2^{n-1} \), pentru orice \( n \ge 2 \). Rezulta
\( e_n \stackrel{not}{=} \sum_{k=0}^n \frac{1}{k!} = e_6 + \sum_{k=7}^n \frac{1}{k!} < 2,7180(5) + \sum_{k=7}^n \frac{1}{2^{n-1}} \le \)
\( 2,7180(5) + \frac{1}{2^6} < 2,75 \le 3 - \frac{1}{n} \), pentru \( n \ge 6 \).
Acum sper ca intentiile mele sunt clarificate, desi evident ca o simpla inductie este recomandata la acest nivel.
Life is complex: it has real and imaginary components.