alta inegalitate ONM SHL 2004

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

SHL 2004

Post by Claudiu Mindrila »

Daca \( a,\ b,\ c\ge0 \) atunci \( \sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(a+b+c\right)^{2}\ge4\sqrt{3abc\left(a+b+c\right)} \).

Valentin Vornicu, lista scurta, 2004
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: SHL 2004

Post by Marius Mainea »

Claudiu Mindrila wrote:Daca \( a,\ b,\ c\ge0 \) atunci \( \sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(a+b+c\right)^{2}\ge4\sqrt{3abc\left(a+b+c\right)} \).

Valentin Vornicu, lista scurta, 2004
\( AM\ge GM \)

\( LHS=sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\frac{(a+b+c)^2}{3}+\frac{(a+b+c)^2}{3}+\frac{(a+b+c)^2}{3}\ge 4\sqrt[4]{sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\(\frac{(a+b+c)^2}{3}\)^3}\ge RHS \)
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Re: SHL 2004

Post by Cezar Lupu »

Marius Mainea wrote:
Claudiu Mindrila wrote:Daca \( a,\ b,\ c\ge0 \) atunci \( \sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(a+b+c\right)^{2}\ge4\sqrt{3abc\left(a+b+c\right)} \).

Valentin Vornicu, lista scurta, 2004
\( AM\ge GM \)

\( LHS=sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\frac{(a+b+c)^2}{3}+\frac{(a+b+c)^2}{3}+\frac{(a+b+c)^2}{3}\ge 4\sqrt[4]{sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\(\frac{(a+b+c)^2}{3}\)^3}\ge RHS \)
Da, sau se poate folosi urmatoarea problema data la un baraj OIM in 2001, anume:

Daca \( a, b, c \) sunt numere reale strict pozitive, atunci are loc inegalitatea:

\( \sum_{cyc}(b+c-a)(c+a-b)\leq\sqrt{abc}{(\sqrt{a}+\sqrt{b}+\sqrt{c}) \).


Las pe cei interesati sa continue solutia mai departe... ;)
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Clasa a IX-a”