Demonstrati ca oricare ar fi \( n\geq 2 \) si numerele strict pozitive \( x_1,x_2,...,x_n \) cu suma 1, avem
\( \sum_{k=1}^n \frac{x_k}{1+k(x_1^2+x_2^2+...+x_k^2)} <\frac{\pi}{4}, \)
iar constanta din dreapta este cea mai mica cu aceasta proprietate.
Traian Lalescu pentru Studenti 2009, Problema 3
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Traian Lalescu pentru Studenti 2009, Problema 3
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Laurentiu Tucaa
- Thales
- Posts: 145
- Joined: Sun Mar 22, 2009 6:22 pm
- Location: Pitesti
Problema e super
Din CBS avem \( k\cdot\sum_{i=1}^k x_i^2\ge (\sum_{i=1}^k x_i)^2 \).(1)
Fie \( S=\sum_{k=1}^n \frac{x_k}{1+k(x_1^2+x_2^2+...+x_k^2)} \).
Aplicand (1) pt k de la 1 la n avem \( S<\sum_{k=1}^n\frac{x_k}{1+(x_1+x_2+...+x_k)^2} \).Acum intervine matematica de a12a:fie diviziunea \( \Delta=(0,x_1,x_1+x_2,...,x_1+...+x_n=1) \) si functia \( f:[0,1]\rightarrow\mathbb{R},f(x)=\frac{1}{1+x^2} \).Fie si \( t_0=0,t_k=\sum_{i=1}^k x_i \).Avem ca f este strict descrescatoare si suma Darboux inferioara asociata diviziunii d si functiei f este strict mai mica decat \( \int_0^1 f(x)dx=\frac{\pi}{4} \).Suma Darboux inferioara este \( s(f,\Delta)=\sum_{k=1}^n (t_k-t_{k-1})f(t_k)=\sum_{k=1}^n\frac{x_k}{1+(x_1+x_2+...+x_k)^2} \).Avem deci \( S<s(f,\Delta)<\frac{\pi}{4} \).
Prin trecere la limita cand \( n\rightarrow\infty \),e clar ca \( \frac{\pi}{4} \) e constanta cea mai mica cu aceasta proprietate.
Din CBS avem \( k\cdot\sum_{i=1}^k x_i^2\ge (\sum_{i=1}^k x_i)^2 \).(1)
Fie \( S=\sum_{k=1}^n \frac{x_k}{1+k(x_1^2+x_2^2+...+x_k^2)} \).
Aplicand (1) pt k de la 1 la n avem \( S<\sum_{k=1}^n\frac{x_k}{1+(x_1+x_2+...+x_k)^2} \).Acum intervine matematica de a12a:fie diviziunea \( \Delta=(0,x_1,x_1+x_2,...,x_1+...+x_n=1) \) si functia \( f:[0,1]\rightarrow\mathbb{R},f(x)=\frac{1}{1+x^2} \).Fie si \( t_0=0,t_k=\sum_{i=1}^k x_i \).Avem ca f este strict descrescatoare si suma Darboux inferioara asociata diviziunii d si functiei f este strict mai mica decat \( \int_0^1 f(x)dx=\frac{\pi}{4} \).Suma Darboux inferioara este \( s(f,\Delta)=\sum_{k=1}^n (t_k-t_{k-1})f(t_k)=\sum_{k=1}^n\frac{x_k}{1+(x_1+x_2+...+x_k)^2} \).Avem deci \( S<s(f,\Delta)<\frac{\pi}{4} \).
Prin trecere la limita cand \( n\rightarrow\infty \),e clar ca \( \frac{\pi}{4} \) e constanta cea mai mica cu aceasta proprietate.
Last edited by Laurentiu Tucaa on Wed Mar 24, 2010 9:53 am, edited 5 times in total.
-
Theodor Munteanu
- Pitagora
- Posts: 98
- Joined: Tue May 06, 2008 5:46 pm
- Location: Sighetu Marmatiei